
1 Copyright © 2015 M. E. Kabay. All rights reserved.

Application
Controls
CSH6 Chapter 52

“Application Controls”
Myles Walsh

2 Copyright © 2015 M. E. Kabay. All rights reserved.

Topics
Protection in Development
Protecting Databases
Protecting Batch Files
Ensuring that Information

in the System is Valid

3 Copyright © 2015 M. E. Kabay. All rights reserved.

Protection in Development
Software Quality Assurance (QA)
Focuses on methods for preventing,

catching and correcting errors in source
code and other operational instructions

Application Controls
Specific subset of methods for preventing

data corruption in production systems
Databases
Primary mechanism for

storing and manipulating
data in today’s systems

Batch vs Online
Live interaction (online)
Automated processing

(batch)
4 Copyright © 2015 M. E. Kabay. All rights reserved.

Types of Data Corruption
 Physical

Caused by hardware
failures

Errors do not correlate
with (respect)
Applications
Files / datasets /

databases
Why not?

 Logical
Caused by software failures
Errors may correlate with

Applications
Files / datasets / databases

Why only “may”?

5 Copyright © 2015 M. E. Kabay. All rights reserved.

DBMS Controls

Referential Integrity
Uniqueness Constraints
Locking
Transaction Controls
Database Recovery

For those who have completed
IS240, this section should be a

review.

6 Copyright © 2015 M. E. Kabay. All rights reserved.

Referential Integrity

 In designing databases, may stipulate that
certain records may not exist without pre-
existing indexes

E.g., cannot normally enter
Order-detail without entering order-header
Prescription data without entering
Patient data
Doctor data
Pharmacist data
Drug data
Admission data

7 Copyright © 2015 M. E. Kabay. All rights reserved.

Referential Integrity (cont’d)

DBMS will prevent deletion of records when
others are dependent on them

E.g.,
Cannot delete order-header if there are

orders with the order-number of that
header
Cannot delete patient-master record if

there are admission records for that
patient

8 Copyright © 2015 M. E. Kabay. All rights reserved.

DBMS Controls

Referential Integrity
Uniqueness Constraints
Locking
Transaction Controls
Database Recovery

9 Copyright © 2015 M. E. Kabay. All rights reserved.

Uniqueness Constraints

 In relational DBMS (RDBMS), every record in
a table (dataset) must be unique
If there is no natural key or index field (or

combination of fields) that guarantees
uniqueness, can create one automatically

DBMS can enforce uniqueness of specific
fields in records using the unique key
characteristic

E.g.,
Order-number
Patient-ID
Student-ID….

10 Copyright © 2015 M. E. Kabay. All rights reserved.

DBMS Controls

Referential Integrity
Uniqueness Constraints
Locking
Transaction Controls
Database Recovery

11 Copyright © 2015 M. E. Kabay. All rights reserved.

Locking

Concurrency Control
Basic Concepts of Locking
Serializable Transactions
Deadlock (Deadly Embrace)
Locking Strategies

12 Copyright © 2015 M. E. Kabay. All rights reserved.

Concurrency Control

Multi-Step Transactions
Resource Locking
Consistent Transactions
Transaction Isolation Level
Cursor Type

13 Copyright © 2015 M. E. Kabay. All rights reserved.

Multi-Step Transactions Are
Fragile

Think about order-entry system
Create order-header
Includes total of cost of line-items (details)
Updated at END of detail data entry

Begin entering line-items
Enter 3 records … have not yet finished
System crashes

What is the value in the order-header’s total
field?

14 Copyright © 2015 M. E. Kabay. All rights reserved.

Concurrency Causes New
Problems

E.g., The Lost Update Problem:
User A reads inventory: finds 20 widgets.
User B reads inventory: also finds 20

widgets.
User A subtracts 10 widgets from 20, writes

total ____ widgets back into inventory
User B subtracts 5 widgets from ____, writes

total ____ widgets back into inventory
But actually, there are only ____ widgets left

in the real inventory

20 widgets

A

20 widgets

B

15 Copyright © 2015 M. E. Kabay. All rights reserved.

Atomic Transactions

We want to complete
All the steps of a transaction or
None of the steps

ATOMIC
Greek “a” for “not” & “tomos” for “cut”
Thus “atomic” means “can not be cut.”

We mark atomic transactions with boundaries
Start transaction
Commit transaction

 If necessary, can reverse steps taken
Rollback transaction

ατομος

16 Copyright © 2015 M. E. Kabay. All rights reserved.

Resource Locking

Basic Concepts of Locking
Lock Terminology
Serializable Transactions
Deadlocks
Optimistic vs Pessimistic Locking
Declaring Lock Characteristics

17 Copyright © 2015 M. E. Kabay. All rights reserved.

Basic Concepts of Locking

Locking is used in inter-process
communication (IPC)

A lock is a form of semaphore (signal)
Locks allow processes to
Coordinate their access to resources
Prevent inconsistencies

 In DBMS, primarily used to serialize data
access
One process gets control of data at a time

18 Copyright © 2015 M. E. Kabay. All rights reserved.

Lock Terminology
 Implicit vs explicit
Automatic locks placed by DBMS: implicit
Programmatically ordered: explicit

Lock granularity
Large: database, dataset
Fine: records

Exclusive vs shared locks
Exclusive:
One process READ/WRITE
No other processes allowed at all

Shared:
One process has R/W
Other processes can only READ

19 Copyright © 2015 M. E. Kabay. All rights reserved.

Conditional vs Unconditional
Locking

Conditional locking
Process 1 locks resource A
Process 2 locks resource A
Receives error condition
Lock fails and process 2 continues

Unconditional locking
Process 1 locks resource A
Process 2 locks resource A
Does not receive a condition report
Process 2 waits in suspense (hangs)

until lock is granted

20 Copyright © 2015 M. E. Kabay. All rights reserved.

Serializable Transactions

Prevent transactions affecting same records
from overlapping

Two-phase locking
Can accumulate locks
But once any lock is released, cannot get

more until all are released
Defines growing phase and shrinking

phase
More restrictive (and more common) strategy
No locks released until COMMIT or

ROLLBACK

21 Copyright © 2015 M. E. Kabay. All rights reserved.

Deadlock (Deadly Embrace)

1 2

A B

Process 1
locks resource

A
unconditionally

Process 2 locks
resource B

unconditionally

1 locks B
unconditionall

y

1 locks B
unconditionally

2 locks A
unconditionally

22 Copyright © 2015 M. E. Kabay. All rights reserved.

Preventing Deadlocks

Deadlock is example of a race condition
Will not necessarily occur
Occurs by chance when specific events

happen at specific time
Always ensure that processes in applications
LOCK RESOURCES IN SAME ORDER
UNLOCK RESOURCES IN REVERSE

ORDER
Apply these principles to example on

previous slide to see how they absolutely
prevent deadlock

23 Copyright © 2015 M. E. Kabay. All rights reserved.

Pessimistic Locking Strategy

Assume collisions will occur and prevent
conflicts
Lock records
Process transaction
Release locks

But very dangerous for performance if
processing involves human interaction
Not controllable
Operator can leave resources locked and hang

system
Operator could go to lunch!

DO NOT LOCK AROUND HUMAN INTERVENTION!
24 Copyright © 2015 M. E. Kabay. All rights reserved.

Optimistic Locking Strategy

Assume collisions will be rare and recover if
they happen
Read original data records
Process transaction using buffers
Lock original data records
Check to see if original data have changed
If no change, commit transaction &

unlock
If change, unlock & start over

25 Copyright © 2015 M. E. Kabay. All rights reserved.

Optimistic Locking (1)

Process

Value1

Value1

Value2

Value1

Value1

DB

Data
buffers

Value2
Observe events when

there is no change
in initial data

during processing

Same
?

26 Copyright © 2015 M. E. Kabay. All rights reserved.

Optimistic Locking (2)

Process

Value1

Value3

Value2

Value3

Value1

DB

Data
buffers

If data change
while process is

preparing new buffer,
start over.

Same
?

Someone else
changed the

data

27 Copyright © 2015 M. E. Kabay. All rights reserved.

Optimistic vs Pessimistic
Strategies

Optimistic locking advantages
Does not lock resources around human

intervention
Appropriate for Web / Internet transactions
Especially important if lock granularity is

large (e.g., entire DB or entire tables)
Optimistic locking disadvantages
If specific resource is in high demand

(much contention for specific records)
then can cause repeated access
(thrashing)
Can degrade individual and system

performance

28 Copyright © 2015 M. E. Kabay. All rights reserved.

Declaring Lock Characteristics
Older programs often used specific calls to

locking routines
E.g., “DBLOCK”
Passed parameters to set exact type of lock
Conditional or not, granularity etc.

Modern programming using DBMS uses
transaction markers
BEGIN, COMMIT, ROLLBACK
Allows global definition of locking strategy
DBMS handles details
Can thus change locking globally without

reprogramming

29 Copyright © 2015 M. E. Kabay. All rights reserved.

DBMS Controls

Referential Integrity
Uniqueness Constraints
Locking
Transaction Controls
Database Recovery

30 Copyright © 2015 M. E. Kabay. All rights reserved.

ACID Transactions

Transactions sometimes described as ideally
ACID
Atomic: all changes in the multi-step

transaction are committed or none is
Consistent: all records involved in the

transaction are changed or none is
Isolated: concurrency does not harm

integrity
Durable: not reversible once committed

except through normal transaction
processing of a new transaction

31 Copyright © 2015 M. E. Kabay. All rights reserved.

Consistency
Statement-level consistency
If change is supposed to apply to group of

records, then no changes to any of those
records will be permitted until all records
have been changed

Transaction-level consistency
Same principle applied to multiple steps
Not always easy to achieve
If locking applied around very long

processes, will see performance /
throughput degradation for other users
May want to limit long updates to batch

processing during off-hours

32 Copyright © 2015 M. E. Kabay. All rights reserved.

Transaction Isolation Level

Can have difficulties / inconsistencies when
concurrent processes access intermediate
results during transactions

Dirty read: access a record changed by
another process but not yet committed

Nonrepeatable read: some other process has
altered the original record (e.g., during
optimistic locking)

Phantom read: a new movie by George Lucas
– NO NO – means new records inserted or
deleted since last read

33 Copyright © 2015 M. E. Kabay. All rights reserved.

ANSI SQL Isolation Levels

Can specify degree of protection desired

Read
Uncommitted

Read
Committed

Repeatable
Read

Serializable

Dirty Read Y N N N
Nonrepeatable Read Y Y N N
Phantom Read Y Y Y N

Isolation Level

Problem
Type

ANSI SQL

34 Copyright © 2015 M. E. Kabay. All rights reserved.

DBMS Controls

Referential Integrity
Uniqueness Constraints
Locking
Transaction Controls
Database Recovery

35 Copyright © 2015 M. E. Kabay. All rights reserved.

Database Recovery

Transactions
Application Logging
Transactions and Log Files
Backups & Log Files
Recovery from Backups
Recovery from Log Files

36 Copyright © 2015 M. E. Kabay. All rights reserved.

Transactions

What are transactions?
Why should we care if a transaction were

interrupted by a DBMS failure or a system
failure?

CLASS DISCUSSION

37 Copyright © 2015 M. E. Kabay. All rights reserved.

Application Logging

Benefits of logging
Audit trail for security / investigations
Performance data
Debugging

What might a logging process write into the
log file when a process is
Adding a record?

Changing a record?

Deleting a record?

CLASS
DISCUSSION

38 Copyright © 2015 M. E. Kabay. All rights reserved.

Transactions and Log Files

Why would it matter to anyone that a log file
keep a distinction among different types of
transactions?

How does a log file mark completion of an
atomic transaction?

CLASS DISCUSSION

39 Copyright © 2015 M. E. Kabay. All rights reserved.

Backups & Log Files
Distinguish among the following types

of backups:
System vs application
Full (everything)
Differential (aka “Partial”) (everything changed

since last full)
 Incremental (everything changed since last

incremental) (aka “Partial”)
Delta (only changed data) (aka “Partial”)
Log files (only the information about the

changes)

40 Copyright © 2015 M. E. Kabay. All rights reserved.

Backup Types

File SUN MON TUE WED THU FRI SAT
A
B
C
D
E

Backup Type SUN MON TUE WED THU FRI SAT
FULL ABCDE ABCDE ABCDE ABCDE ABCDE ABCDE ABCDE
DIFFERENTIAL A AB ABD ABCD ABCDE ABCDE
INCREMENTAL A B AD ABCD CDE ABC
DELTA (records) A' B' A'D' A'B'C'D' C'D'E' A'B'C'

Do not use the term “partial backup.”

41 Copyright © 2015 M. E. Kabay. All rights reserved.

Recovery from Log Files

Roll-backward recovery
Use log file to identify interrupted

(incomplete) transactions using checkpoints
Look for start marker without end marker

Remove all changes that are part of those
incomplete transactions

Roll-forward recovery
Start with valid backup
Use log file to re-apply all completed

transactions
Leave out the incomplete transactions

Which kind
of recovery
is faster?

42 Copyright © 2015 M. E. Kabay. All rights reserved.

Protecting Batch Files
Batch processing as defined in Computer Desktop

Encyclopedia:
 (1) Performing a particular operation automatically

on a group of files all at once rather than manually
opening, editing and saving one file at a time. For
example, graphics software that converts a
selection of images from one format to another
would be a batch processing utility.

 (2) Processing a group of transactions at one time.
Transactions are collected and processed against
the master files (master files updated) at the end of
the day or some other time period. Contrast with
transaction processing.

43 Copyright © 2015 M. E. Kabay. All rights reserved.

B
at

ch
 P

ro
ce

ss
in

g
(2

)

© Computer
Desktop

Encyclopedia
44 Copyright © 2015 M. E. Kabay. All rights reserved.

Batch Processing (3)

Normal batch processing automatically keeps
original files as default backups

Process master file + transaction file(s)
Copy unchanged records into new file
Copy modified records from transactions
Don’t copy deleted records

End up with
Original master file
New master file
Transaction (activity) files

Typically keep several generations of masters

45 Copyright © 2015 M. E. Kabay. All rights reserved.

Assuring that Information in
the System is Valid
Validation Controls: catching data input errors
Check digits in input stream
Hash totals
Digital signatures
Range checks
Table lookups (including combinations)

Diagnostic Utilities: catching data corruption or
tampering
Edit checks
Business rules
Exception reports
Statistical Quality Control (SQC) methods

(anomaly detection)
46 Copyright © 2015 M. E. Kabay. All rights reserved.

Review Questions (1)
1. Distinguish between SQA and application controls.
2. Why should we pay attention to applications when

planning our security procedures?
3. Why are databases of such concern in application security

discussions?
4. Name and distinguish between the two fundamental types

of data corruption (by cause).
5. Explain the concept of referential integrity using

examples.
6. How do DBMSs enforce uniqueness constraints?

47 Copyright © 2015 M. E. Kabay. All rights reserved.

Review Questions (2)
7. Why do concurrently-accessed databases require locking

strategies?
8. What’s a transaction?
9. What is meant by atomic transactions?
10.How is a transaction marked in a log file?
11.Which has finer granularity, locking an entire dataset or

locking a set of records?
12.Distinguish between exclusive and shared locks.
13.Distinguish between conditional and unconditional locks.
14.What’s a deadlock and how can you prevent it?

48 Copyright © 2015 M. E. Kabay. All rights reserved.

Review Questions (3)
15.Distinguish between pessimistic and optimistic locking

strategies.
16.What does ACID mean in discussions of transactions?

Explain each of the components.
17.Why do production applications normally include log

files as part of their design?
18.Explain how roll-backward recovery works.
19.Explain how roll-forward recovery works.
20.Discuss the security features of batch processing.
21.Explain how applying each of the validation controls

described in slide 45 could help check the validity of
stored information in a database.

