Data Normalization	
(2)	
IS 240 – Database	
Lecture #5 – 2010-02-08 M. E. Kabay, PhD, CISSP-ISSMP Assoc. Prof. Information Assurance School of Business & Management, Norwich University	

mailto:mkabay@norwich.edu

Copyright © 2010 Jerry Post. All rights reserved.

Overview of Today's Work

V: 802.479.7937

- Continue discussion of normalization
- > Work on examples together
- > Important to get involved in class discussion
- Can absorb / integrate concepts only by using them
- Do not try to memorize without understanding DWaste of your time
- > Do the homework exercises seriously
 - □They will ensure success
 - Students from previous IS240 classes have reported good experiences in real jobs – praised for understanding principles that help design good databases

Don't Panic!

- We are not trying to discuss 66 slides in one session
- Much of today's material will serve as reference and review for your studies
- Opportunity to discuss principles and illustrate them with specific cases

2

Copyright © 2010 Jerry Post. All rights reserved.

Boyce-Codd Normal Form (BCNF)

1819
NORWICH

Employee(E<u>#, Manager</u>)

Manager(Manager, Specialty)

Employee(E#, Specialty, Manager)

Manager(Manager, Specialty)

- Hidden dependency
- Employee-Specialty(E#, Specialty, Manager)

- > Example:
 - □ Employee-Specialty(<u>E#</u>, <u>Specialty</u>, Manager) □ Is in 3NF now.
- Business rules.
 - Employee may have many specialties.
 - Each specialty has many managers.
 - □ Each manager has only one specialty.
 - □ Employee has only one manager for each specialty.
- > Problem is hidden relationship between manager and specialty.
 - Need separate table for manager.
 - □ But then we don't need to repeat specialty.
- In real life, probably accept the duplication (specialty listed in both tables).

Fourth Normal Form (Keys)

EmployeeTasks(EID, Specialty, ToolID)

- Technically, if you keyed every column, any table would be in 3NF, which does not solve any problems.
- In some cases, there are hidden relationships between key properties.
- > Example:

EmployeeTasks(EID, Specialty, ToolID)

□ In 3NF (BCNF) now.

Business Rules

□ Each employee has many specialties.

□ Each employee has many tools.

Tools and specialties are unrelated

EmployeeSpecialty(EID, Specialty)

EmployeeTools(EID, ToolID)

Copyright © 2010 Jerry Post. All rights reserved.

DKNF Examples

Employee(EID, Name, Speciality)

Business rule: *An employee can have many specialties.* Example is not in DKNF: EID is not unique.

Employee(EID, Name, Speciality)

Business rule: *An employee has one name.* Example is not DKNF: hidden relationship between EID and name

Employee(EID, Name) EmployeeSpecialty(EID, Speciality)

Domain-Key Normal Form (DKNF)

- DKNF is ultimate goal: table will always be in 4NF, etc.
- Drawbacks
 - □ No mechanical method to get to DKNF

□ No guarantee a table can be converted to DKNF

Rules

□ Table => one topic

□ All business rules explicitly written as domain constraints and key relationships.

□ No hidden relationships.

Employee(EID, Name, speciality)

Business rule: *An employee can have many specialties.* So example is not in DKNF, since EID is not unique.

Copyright © 2010 Jerry Post. All rights reserved.

DKNF Examples

Student(SID, Name, Major, Advisor)

Advisor(FID, Name, Office, Discipline)

Business rules: A student can have many advisors, but only one for each major. Faculty can only be advisors for their discipline.

Not in DKNF: Primary key and hidden rule.

Student(<u>SID</u>, Name) Advisors(<u>SID</u>, <u>Major</u>, FID)

Faculty(FID, Name, Office, Discipline)

DKNF: Foreign key (Major <--> Discipline) makes advisor rule explicit.

5

Data Rules and Integrity

1819	
NORWICH	

...

> Simple business rules

- Limits on data ranges
 - ✓ Price > 0
 - ✓ Salary < 100,000
 - ✓ DateHired > 1/12/1995
- □ Choosing from a set
 - ✓ Gender = M, F, Unknown
 - ✓ Jurisdiction=City, County, State, Federal
- Referential Integrity
 - Foreign key values in one table must exist in the master table.
 - □ Order(<u>O#</u>, Odate, C#,...)
 - C# must exist in the customer table.

C#

Order

Odate

O#

938 Carson 8738-

Copyright © 2010 Jerry Post. All rights reserved.

Business Rules 1

There is one referee per match. A player can play on only one team.

Match(<u>MatchID</u>, DatePlayed, Location, RefID) Score(<u>MatchID</u>, <u>TeamID</u>, Score) Referee(<u>RefID</u>, Phone, Address) Team(<u>TeamID</u>, Name, Sponsor) Player(<u>PlayerID</u>, Name, Phone, DoB, TeamID) PlayerStats(MatchID, PlayerID, Points, Penalties)

RefID and TeamID are **not** keys in the Match and Team tables, because of the one-to-one rules.

Effect of Business Rules

									UNIVERSITY
Location					Referee N	lame			
Date Playe	ed				Phone Nu	umber, A	ddress		
Team 1		Score	9		Team 2		Score		
Name					Name				
Sponsor					Sponsor				
Player	Phone	Age	Points	Penalties	Player	Phone	Age	Points	Penalties
Name		- C			Name		Ũ		

Key business rules: A player can play on only one team. There is one referee per match.

10

Copyright © 2010 Jerry Post. All rights reserved.

Business Rules 2

There can be several referees per match. A player can play on several teams (substitute), but only on one team per match.

Match(<u>MatchID</u>, DatePlayed, Location, <u>RefID</u>) Score(<u>MatchID</u>, <u>TeamID</u>, Score) Referee(<u>RefID</u>, Phone, Address) Team(<u>TeamID</u>, Name, Sponsor) Player(<u>PlayerID</u>, Name, Phone, DoB, <u>TeamID</u>) PlayerStats(<u>MatchID</u>, <u>PlayerID</u>, Points, Penalties)

To handle the many-to-many relationship, we need to make RefID and TeamID keys. But if you leave them in the same tables, the tables are not in 3NF. DatePlayed does not depend on RefID. Player Name does not depend on TeamID.

Business Rules 2: Normalized

There can be several referees per match. A player can play on several teams (substitute), but only on one team per match.

Match(<u>MatchID</u>, DatePlayed, Location) RefereeMatch(<u>MatchID</u>, <u>RefID</u>) Score(<u>MatchID</u>, <u>TeamID</u>, Score) Referee(<u>RefID</u>, Phone, Address) Team(<u>TeamID</u>, Name, Sponsor) Player(<u>PlayerID</u>, Name, Phone, DoB) PlayerStats(<u>MatchID</u>, <u>PlayerID</u>, TeamID, Points, Penalties)

Copyright © 2010 Jerry Post. All rights reserved.

Converting a Class Diagram to Normalized Tables

14

Copyright © 2010 Jerry Post. All rights reserved.

One-to-Many Relationships

Supplier	1 *	Purchase	*	1 Employed
Supplier		Order		Employee

Supplier(<u>SID</u>, Name, Address, City, State, Zip, Phone) Employee(<u>EID</u>, Name, Salary, Address, ...)

PurchaseOrder(<u>POID</u>, Date, SID, EID)

The many side becomes a key (underlined). Each PO has one supplier and employee. (Do not key SID or EID) Each supplier can receive many POs. (Key PO) Each employee can place many POs. (Key PO)

One-to-Many Sample Data

Suppl	ier						
ID	Nai	ne	Address	City	State	Zip	Phone
5676	Jon	es	123 Elm	Ames	IA	50010	515-777-8988
6731	Ma	rkle	938 Oak	Boston	MA	02109	617-222-9999
7831	Rar	niche	873 Hickory	Jackson	MS	39205	601-333-9932
8872	Sw	ensen	773 Poplar	Wichita	KS	67209	316-999-3312

Purchase Order

	\			_
POID	Date	SID	EID	
22234	9-9-2004	5676	221	
22235	9-10-2004	5676	554	
22236	9-10-2004	7831	221	
22237	9-11-2004	8872	335	\searrow
				-

	Empl	oyee		
	EID	Name	Salary	Address
1	221	Smith	67,000	223 W. 2300
	335	Sanchez	82,000	37 W. 7200
	554	Johnson	35,000	440 E. 5200

NORWICH

UNIVERSIT

NORWICH

UNIVERSITY

Multiple Views & View Integration

> Example

Federal Emergency Management Agency

(FEMA). Disaster

□ Make business

assumptions as

planning and relief.

necessary, but try to

keep them simple.

- Collect multiple views
 Documents
 - Reports
 - □ Input forms
- Create normalized tables from each view
- Combine the views into one complete model.
- Keep meta-data in a data dictionary
 - □ Type of data
 - 🗆 Size
 - □ Volume
 - □Usage
- Copyright © 2010 Jerry Post. All rights reserved

The Pet Store: Purchase Animals

F	^o urchase Order f	or 4	Animals	
Qrder#			Date Ordere	d
			Date Receive	d
Supplier			Employee ID	
Name			Name	
Contact			Home Phone	
Phone			Date Hired	
Address				
City, State, ZIPco	de			
	Animal Desci	ript	ions	
Name Category	Breed Gen	ler	Registration	Price
			Subtotal	
			Shipping Cost	
			Total	

AnimalOrder(OrderID, OrderDate, ReceiveDate, SupplierID, Name, Contact, Phone, Address, City, State, Zip, EmployeeID, Name, Phone, DateHired, (AnimalID, Name, Category, Breed, Gender, Registration, Cost), ShippingCost)

Sales# Customer Name	Date
Customer	
M	Employee ID
Ivame	Name
Address	
City, State, Zip	
An	imal Sale
ID Name Category Breed Do	B Gender Reg. Color ListPrice SalePric
	Animal SubTotal
Merch	nandise Sale
Item Description Category	ListPrice SalePrice Quantity Extended

Sales(SaleID, Date, CustomerID, Name, Address, City, State, Zip, EmployeeID, Name, (AnimalID, Name, Category, Breed, DateOfBirth, Gender, Registration, Color, ListPrice, SalePrice), (ItemID, Description, Category, ListPrice, SalePrice, Quantity))

26

Copyright © 2010 Jerry Post. All rights reserved.

Subtotal

Tax Total

The Pet Store: Purchase Merchandise

NORWICH

UNIVERSIT

Dunchass Orden for M	[arahandiga				
Qrder# Date Order for Merchandise					
	Date Received				
Supplier	Employee ID				
Name	Name				
Contact	Home Phone				
Phone					
Address					
City, State, ZIPcode					
Items Order	ed				
ItemID Description Category Pri	ce Quantity Ext. QOH				
	Subtotal				
1	Shipping Cost				
	Total				

MerchandiseOrder(PONumber, OrderDate, ReceiveDate, SupplierID, Name, Contact, Phone, Address, City, State, Zip, EmployeeID, Name, HomePhone, (ItemID, Description, Category, Price, Quantity, QuantityOnHand), ShippingCost)

Pet Store Normalization

Sale(<u>SaleID</u>, Date, CustomerID, EmployeeID) SaleAnimal(SaleID, <u>AnimalID</u>, SalePrice) SaleItem(<u>SaleID</u>, <u>ItemID</u>, SalePrice, Quantity) Customer(<u>CustomerID</u>, Name, Address, City, State, Zip) Employee(<u>EmployeeID</u>, Name) Animal(<u>AnimalID</u>, Name, Category, Breed, DateOfBirth, Gender, Registration, Color, ListPrice) Merchandise(<u>ItemID</u>, Description, Category, ListPrice)

AnimalOrder(<u>OrderID</u>, OrderDate, ReceiveDate, SupplierID, EmpID, ShipCost) AnimalOrderItem(<u>OrderID</u>, <u>AnimalID</u>, Cost) Supplier(<u>SupplierID</u>, Name, Contact, Phone, Address, City, State, Zip) Employee(<u>EmployeeID</u>, Name, Phone, DateHired) Animal(<u>AnimalID</u>, Name, Category, Breed, Gender, Registration, Cost)

MerchandiseOrder(<u>PONumber</u>, OrderDate, ReceiveDate, SID, EmpID, ShipCost) MerchandiseOrderItem(<u>PONumber</u>, <u>ItemID</u>, Quantity, Cost) Supplier(<u>SupplierID</u>, Name, Contact, Phone, Address, City, State, Zip) Employee(<u>EmployeeID</u>, Name, Phone) Merchandise(ItemID, Description, Category, QuantityOnHand)

29

Copyright © 2010 Jerry Post. All rights reserved.

Pet Store View Integration

Sale(<u>SaleID</u>, Date, CustomerID, EmployeeID) SaleAnimal(<u>SaleID</u>, <u>AnimalID</u>, SalePrice) SaleItem(<u>SaleID</u>, <u>ItemID</u>, SalePrice, Quantity) Customer(<u>CustomerID</u>, Name, Address, City, State, Zip) Employee(<u>EmployeeID</u>, Name, Phone, DateHired) Animal(<u>AnimalID</u>, Name, Category, Breed, DateOfBirth, Gender, Registration, Color, ListPrice, Cost) Merchandise(<u>ItemID</u>, Description, Category, ListPrice, QuantityOnHand)

AnimalOrder(<u>OrderID</u>, OrderDate, ReceiveDate, SupplierID, EmpID, ShipCost) AnimalOrderItem(<u>OrderID</u>, <u>AnimalID</u>, Cost) Supplier(<u>SupplierID</u>, Name, Contact, Phone, Address, City, State, Zip) <u>Employee(<u>EmployeeID</u>, Name, Phone, DateHired) Animal(AnimalID, Name, Category, Breed, Gender, Registration, Cost)</u>

MerchandiseOrder(<u>PONumber</u>, OrderDate, ReceiveDate, SID, EmpID, ShipCost) MerchandiseOrderItem(<u>PONumber</u>, <u>ItemID</u>, Quantity, Cost) <u>Supplier(<u>SupplierID</u>, Name, Contact, Phone, Address, City, State, Zip) Employee(<u>EmployeeID</u>, Name, Phone) <u>Merchandise(ItemID, Description, Category, QuantityOnHand)</u></u>

30

Copyright © 2010 Jerry Post. All rights reserved.

Pet Store Class Diagram

Rolling Thunder Integration

🗉 Bicycle Assembly	_			- D X
Bioycle Assembly	C	lose		
Oldest Employee IE Serial Number 28218 •	29387 - Tube f ID Material Desc	ription		
4 Model Race * Construction Bonded \$1,700.00 Frame Size 56 HeadTube < 73.8	Chain 620 Metal matrix Aluminum + Ce Down 620 Metal matrix Aluminum + Ce Front 620 Metal matrix Aluminum + Ce Rear 620 Metal matrix Aluminum + Ce	ramic ramic ramic ramic		
Top Tube 56 SeatTube <	Seat 620 Metal matrix Aluminum + Ce Record: I I I I I I I I I I I I I I I I I I I	ramic ↓ ★ of 6		
PaintID 1 Neon Blue Color Style Solid	Lategory Componentil, Substitutell Headset 102000 0 Eront derailleur 202000 0	HD-UL600 51512 ED-UL6401 51512	7/15/1994 1 7/15/1994 1	QUH ▲ 17 10
Color List BLUE	Rear derailleur 302000 0 Brakeset levers 402000 0	RD-UL6401 51512 LV-600STI 51512	7/15/1994 1 7/15/1994 1	9
Letter Style Block	Brakes 502000 0 Crank 604000 0	BR-UL600 51512 CR-UL600170 51512	7/15/1994 1 7/15/1994 1	8
Employee Date/Time Frame 15293 7/13/1994	Bottom bracket 706000 0 Rear cogs 804000 0	BB-UN71 51512 CG-UL8-21 51512	7/15/1994 1 7/15/1994 1	19 6
Paint 51512	Handlebar 912000 0 Record: I	HB-Drop 51512 * of 18	//15/1994 1	<u> </u>
Ship 51512 15Jul-94	Install All			

Bicycle Assembly form. The main EmployeeID control is not stored directly, but the value is entered in the assembly column when the employee clicks the column.

Initial Tables for Bicycle Assembly

BicvcleAssemblv(

SerialNumber, Model, Construction, FrameSize, TopTube, ChainStay, HeadTube, SeatTube, PaintID, PaintColor, ColorStyle, ColorList, CustomName, LetterStyle, EmpFrame, EmpPaint, BuildDate, ShipDate,

(Tube, TubeType, TubeMaterial, TubeDescription),

(CompCategory, ComponentID, SubstID, ProdNumber, EmpInstall, DateInstall, Quantity, QOH)

Bicycle(SerialNumber, Model, Construction, FrameSize, TopTube, ChainStay, HeadTube, SeatTube, PaintID, ColorStyle, CustomName, LetterStyle, EmpFrame, EmpPaint, BuildDate, ShipDate) Paint(PaintID, ColorList) BikeTubes(SerialNumber, TubeID, Quantity)

TubeMaterial(TubeID, Type, Material, Description)

BikeParts(SerialNumber, ComponentID, SubstID, Quantity, DateInstalled, EmpInstalled)

Component(ComponentID, ProdNumber, Category, QOH)

33

Copyright © 2010 Jerry Post. All rights reserved

RT Purchase Order: Initial Tables

36

PurchaseOrder(PurchaseID, PODate, EmployeeID, FirstName, LastName, ManufacturerID, MfgName, Address, Phone, CitvID, CurrentBalance, ShipReceiveDate, (ComponentID, Category, ManufacturerID, ProductNumber, Description, PricePaid, Quantity, ReceiveQuantity, ExtendedValue, QOH, ExtendedReceived), ShippingCost, Discount)

PurchaseOrder(PurchaseID, PODate, EmployeeID, ManufacturerID, ShipReceiveDate, ShippingCost, Discount)

Employee(EmployeeID, FirstName, LastName)

Manufacturer(ManufacturerID, Name, Address, Phone, Address, CityID, CurrentBalance)

City(CityID, Name, ZipCode)

Purchaseltem(PurchaseID, ComponentID, Quantity, PricePaid, ReceivedQuantity)

Component(ComponentID, Category, ManufacturerID, ProductNumber, Description, QOH)

Rolling Thunder: Purchase Order NORWICH

INIVERSIT

RT Transactions: Initial Tables

ManufacturerTransactions(ManufacturerID, Name, Phone, Contact, BalanceDue, (TransDate, Employee, Amount, Description))

Manufacturer(<u>ManufacturerID</u>, Name, Phone, Contact, BalanceDue) ManufacturerTransaction(<u>ManufacturerID</u>, <u>TransactionDate</u>, EmployeeID, Amount, Description)

Copyright © 2010 Jerry Post. All rights reserved

RT Components: Initial Tables

ComponentForm(ComponentID, Product, BikeType, Category, Length, Height, Width, Weight, ListPrice, Description, QOH, ManufacturerID, Name, Phone, Contact, Address, ZipCode, CityID, City, State, AreaCode)

Component(<u>ComponentID</u>, ProductNumber, BikeType, Category, Length, Height, Width,Weight, ListPrice, Description, QOH, ManufacturerID) Manufacturer(<u>ManufacturerID</u>, Name, Phone, Contact, Address, ZipCode, CityID) City(<u>CityID</u>, City, State, ZipCode, AreaCode)

Rolling Thunder: Components

RT: Integrating Tables

NORWICH

Duplicate Manufacturer tables:

 PO
 Mfr(<u>ManufacturerID</u>, Name, Address, Phone, CityID, CurrentBalance)

 Mfg
 Mfr(<u>ManufacturerID</u>, Name, Phone, Contact, BalanceDue)

 Comp
 Mfr(<u>ManufacturerID</u>, Name, Phone, Contact, Address, ZipCode, CityID)

Note that each form can lead to duplicate tables. Look for tables with the same keys, but do not expect them to be named exactly alike. Find all of the data and combine it into one table.

Manufacturer(<u>ManufacturerID</u>, Name, Contact, Address, Phone, Address, CityID, |ZipCode, CurrentBalance)

RT Example: Integrated Tables

Bicycle(SerialNumber, Model, Construction, FrameSize, TopTube, ChainStay, HeadTube, SeatTube, PaintID, ColorStyle, CustomName, LetterStyle, EmpFrame, EmpPaint, BuildDate, ShipDate) Paint(PaintID, ColorList) BikeTubes(SerialNumber, TubeID, Quantity) TubeMaterial(TubeID, Type, Material, Description) BikeParts(SerialNumber, ComponentID, SubstID, Quantity, DateInstalled, EmpInstalled) Component(ComponentID, ProductNumber, BikeType, Category, Length, Height, Width, Weight, ListPrice, Description, QOH, ManufacturerID) PurchaseOrder(PurchaseID, PODate, EmployeeID, ManufacturerID, ShipReceiveDate, ShippingCost, Discount) Purchaseltem(PurchaselD, ComponentID, Quantity, PricePaid, ReceivedQuantity) Employee(EmployeeID, FirstName, LastName) Manufacturer(ManufacturerID, Name, Contact, Address, Phone, CityID, ZipCode, CurrentBalance) ManufacturerTransaction(ManufacturerID, TransactionDate, EmployeeID, Amount, Description, Reference)

City(CityID, City, State, ZipCode, AreaCode)

Copyright © 2010 Jerry Post. All rights reserved.

View Integration (FEMA Example 1)

Team Roster							
Team# Date Formed Leader							
Home Base	Name Fax Phone						
Response time (days)	Address, C,S,Z Home phone						
Team Members/Crew							
ID Name Home phone Specialty DoB SSN Salary							
Total Salary							

> This first form is kept for each team that can be called on to help in emergencies.

View Integration (FEMA Example 2)

1 /11(11)	iibio			UNIV
Disaster Name Local Agency Political Conta	e ct	HQ Locat Comman	ion der	On-Site Problem Report
Date Reported Problem Desc	l ription	Assigned	Problem#	Severity
Reported By: Verified By:	Spec Spec	cialty cialty	Specialty Specialty	Rating Rating
		SubProbl	em Details	
Sub Prob# 0	Category	Description	Action	Est. Cost
<u> </u>				Total Est. Cost

NORWICH

Major problems are reported to HQ to be prioritized and scheduled for correction.

View Integration (FEMA Example 3)

1819
NORWICH
UNIVERSITY"

Loca LocationID, Address Latitude, Longitude	tion Damage Anal Team Leader Cellular Phone	ysis Title e	Date Evaluated Repair Priority Damage Description
Room Damage Desc	rip. Damage%	tem Val	ue \$Loss
Room Damage Desc	rip. Damage%	tem Val	ue \$Loss
Item Loss Total			

On-site teams examine buildings and file a report on damage at that location.

Copyright © 2010 Jerry Post. All rights reserved.

View Integration (FEMA Example 3a)

 Location Analysis(LocationID, MapLatitude, MapLongitude, Date, Address, Damage, PriorityRepair, Leader, LeaderPhone, LeaderTitle, (Room, Description, PercentDamage, (Item, Value, Loss)))

46

Copyright © 2010 Jerry Post. All rights reserved.

View Integration (FEMA Example 4)

	1819
NOF	RWICH

-

Disaster Name	Disa	Task Cor aster Rating	mpleti HQ	on Report Phone		Date
Problem# Supervisor Date						
SubPr	roblem T	eam# Team Spe	cialty	CompletionStatus	Comment	Expenses
					Total Exp	enses
Problem# Supervisor Date						
SubPr	roblem T	eam# Team Spe	cialty	CompletionStatus	Comment	Expenses
					Total Exp	enses

Teams file task completion reports. If a task is not completed, the percentage accomplished is reported as the completion status.

View Integration (FEMA Example 4a)

 TasksCompleted(Date, DisasterName, DisasterRating, HQPhone, (Problem#, Supervisor, (SubProblem, Team#, CompletionStatus, Comments, Expenses))

DBMS Table Definition

	NORWICH
Enter Tables	> Column Properties
□ Columns	🗆 Format
□ Keys	🗆 Input Mask
🗆 Data Types	Caption
✓ Text	🗆 Default
✓ Memo	Validation Rule
✓ Number	Validation Text
■ Byte	Required & Zero Length
Integer, Long	□ Indexed
Single, Double	Relationships
✓ Date/Time	🗆 One-to-One
✓ Currency	🗆 One-to-Many
✓ AutoNumber (Long)	Referential Integrity
√ Yes/No	Cascade Update/Delete
✓ OLE Object	Define before entering
Description	data s reserved.

Table Definition in Access

Data Volume

- Estimate the total size of the database.
 - □ Current.

 \triangleright

- □ Future growth.
- Guide for hardware and software purchases.
- For each table.
 - Use data types to estimate the number of bytes used for each row.
 - Multiply by the estimated number of rows.
- Add the value for each table to get the total size.

- NORWICH
- For concatenated keys (and ersity's similar tables).
 - □ OrderItems(<u>O#</u>, <u>Item#</u>, Qty)
 - Hard to "know" the total number of items ordered.
 - ✓ Start with the total number of orders.
 - Multiply by the average number of items on a typical order.
- Need to know time frame or how long to keep data.
 - Do we store all customer data forever?
 - □ Do we keep all orders in the active database, or do we migrate older ones?

Data Volume Example

Customer(<u>C#</u>, Name, Address, City, State, Zip) Row: 4 + 15 + 25 + 20 + 2 + 10 = 76

Order(<u>O#,</u> C#, Odate) Row: 4 + 4 + 8 = 16

OrderItem(O#, P#, Quantity, SalePrice) Row: 4 + 4 + 4 + 8 = 20

 $Orders in 3 yrs = 1000 Customers * \frac{10 Orders}{Customer} * 3 yrs = 30,000$ $OrderLines = 30,000 Orders * \frac{5 Lines}{1000} = 150,000$

$$PrderLines = 30,000 \, Orders * \frac{OLINES}{Order} = 150,$$

Business rules

Three year retention.	Customer	76 * 1000	76,000
1000 customers.	Order	16 * 30,000	480,000
Average 10 orders per customer per year.	OrderItem	20 * 150,000	3,000,000
Average 5 items per order.	Total		3,556,000

52

50

Appendices

- Review same material as textbook
- Excellent review for you
 - Explain the slides to each other and to yourself
 - □Show how examples cause problems
 - □Explain how you would solve those problems

Copyright © 2010 Jerry Post. All rights reserved.

Appendix: Functional Dependency

Derives from a real-world relationship/constraint.

Denoted X \rightarrow Y

for sets of attributes X and Y

Holds when any rows of data that have identical values for X attributes also have identical values for their Y attributes:

If t1[X] = t2[X], then t1[Y] = t2[Y]

X is also known as a determinant if X is non-trivial (not a subset of Y).

Appendix: Formal Definitions: Terms

	Formal Definition		Informal
	Relation	A set of attributes with data that changes over time. Often denoted R.	Table
	AttributeCharacteristic with a real- world domain. Subsets of attributes are multiple columns, often denoted X or Y.TupleThe data values returned for specific attribute sets are often denoted as t[X]SchemaCollection of tables and 		Column
			Row of data
	Functional dependency	X→Y	Business rule dependency

54

Copyright © 2010 Jerry Post. All rights reserved.

Appendix: Keys

Keys are attributes that are ultimately used to identify rows of data.

A key K (sometimes called candidate key) is a set of attributes

- (1) With FD K \rightarrow U where U is all other attributes in the relation
- (2) If K' is a subset of K, then there is no FD K' \rightarrow U

A set of key attributes functionally determines all other attributes in the relation, and it is the smallest set of attributes that will do so (there is no smaller subset of K that determines the columns.)

Appendix: First Normal Form

Atomic attributes are single valued, and cannot be composite, multi-valued or nested relations.

Example:

Customer(CID, Name: First + Last, Phones, Address)

CID	Name: First + Last	Phones	Address
111	Joe Jones	111-2223 111-3393 112-4582	123 Main
		\sim	

Copyright © 2010 Jerry Post. All rights reserved.

Appendix: Transitive Dependency

NOT

1NF

Given functional dependencies: $X \rightarrow Y$ and $Y \rightarrow Z$, the transitive dependency $X \rightarrow Z$ must also hold.

Example:

There is an FD between OrderID and CustomerID. Given the OrderID key attribute, you always know the CustomerID.

There is an FD between CustomerID and the other customer data, because CustomerID is the primary key. Given the CustomerID, you always know the corresponding attributes for Name, Phone, and so on.

Consequently, given the OrderID (X), you always know the corresponding customer data by transitivity.

Appendix: Second Normal Form

Ā relation is in **second normal form (2NF)** if it is in 1NF and each non-key attribute is fully functionally dependent on the primary key.

 $K \rightarrow Ai$ for each non-key attribute Ai

That is, there is no subset K' such that $K' \rightarrow Ai$

Example:

OrderProduct(OrderID, ProductID, Quantity, Description)

0

<u>OrderID</u>	ProductID	Quantity	Description
32	15	1	Blue Hose
32	16	2	Pliers
33	15	1	Blue Hose

58

Copyright © 2010 Jerry Post. All rights reserved.

Appendix: Third Normal Form

NOT

3NF

 \bigcirc

0

0

A relation is in third normal form if and only if it is in 2NF and no non-key attributes are transitively dependent on the primary key.

That is, $K \rightarrow Ai$ for each attribute, (2NF) and

There is no subset of attributes X such that $K \rightarrow X \rightarrow Ai$

Example:

Order(OrderID, OrderDate, CustomerID, Name, Phone)

OrderID	OrderDate	CustomerID	Name	Phone
32	5/5/2004	1	Jones	222-3333
33	5/5/2004	2	Hong	444-8888
34	5/6/2004	1	Jones	222-3333

Appendix: Boyce-Codd Normal Form

A relation is in Boyce-Codd Normal Form (BCNF) if and only if it is in 3NF and every determinant is a candidate key (or K is a superkey).

That is, $K \rightarrow Ai$ for every attribute, and there is no subset X (key or nonkey) such that $X \rightarrow Ai$ where X is different from K.

Example: Employees can have many specialties, and many employees can be within a specialty. Employees can have many managers, but a manager can have only one specialty: Mgr \rightarrow Specialty

EmpSpecMgr(EID, Specialty, ManagerID)

<u>EID</u>	Speciality	ManagerID	
32	Drill	1	c
33	Weld	2	
34	Drill	1	

FD ManagerID \rightarrow Specialty is not currently a key.

NOT BCNF

Copyright © 2010 Jerry Post. All rights reserved

° ()

Appendix: Fourth Normal Form

A relation is in fourth normal form 4NF if and only if it is in BCNF and there are no multi-valued dependencies.

That is, all attributes of R are also functionally dependent on A.

If $A \rightarrow A$ B, then all attributes of R are also functionally dependent on A: $A \rightarrow Ai$ for each attribute.

Appendix: Multi-Valued Dependency

A multi-valued dependency (MVD) exists when there are at least three attributes in a relation (A, B, and C; and they could be sets), and one attribute (A) determines the other two (B and C) but the other two are independent of each other.

That is, $A \rightarrow B$ and $A \rightarrow C$ but B and C have no FDs

Example:

Employees have many specialties and many tools, but tools and specialties are not directly related.

62

Copyright © 2010 Jerry Post. All rights reserved.

HOMEWORK

> REQUIRED by Sun 20 Feb 2010 at 23:59

□Study Chapter 3 AGAIN using SQ3R

- □Check the review questions again to be sure they all make sense to you and you can easily answer them
- □For 20 points, submit written answers to Ch 3 problem 7
- > OPTIONAL by Sun 20 Feb 2010 at 23:59
 - □For 10 extra points
 - □Solve and submit solution to Corner Med problem 14 if you haven't already submitted it for credit.