
DB Integrity &
Transactions

Part 1

1 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

IS240 – DBMS
Lecture #11 – 2010-04-05

M. E. Kabay, PhD, CISSP-ISSMP
Assoc. Prof. Information Assurance

School of Business & Management, Norwich University
mailto:mkabay@norwich.edu V: 802.479.7937

Objectives

Why would you need to use procedural code
when SQL is so powerful?

How do you use data triggers to make
changes automatically?

How does the DBMS ensure related changes

2 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

How does the DBMS ensure related changes
are made together?

How do you handle multiple users changing
the same data at the same time?

How are internal key values generated and
used in updates?

What is the purpose of database cursors?

DBMS

Programming Environment

 Create code
(1) Within the query

system
(2) In forms and reports
(3) Hosted in external

programs

Tables

Queries

If (. .) Then
SELECT . . .

Else . . .
UPDATE . . .E t l

(1)

3 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

Forms &
Reports

If (Click) Then
MsgBox . . .

End If

UPDATE . . .
End If

C++

External
Program

if (. . .) {
// embed SQL
SELECT …

}

(2)

(3)

User-Defined Function
CREATE FUNCTION EstimateCosts

(ListPrice Currency, ItemCategory VarChar)
RETURNS Currency
BEGIN

IF (ItemCategory = ‘Clothing’) THEN
RETURN ListPrice * 0.5

ELSE
RETURN ListPrice * 0 75

4 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

RETURN ListPrice 0.75
END IF

END

Function to Perform
Conditional Update

CREATE FUNCTION IncreaseSalary
(EmpID INTEGER, Amt CURRENCY)

RETURNS CURRENCY
BEGIN

IF (Amt > 50000) THEN
RETURN -1 -- error flag

END

5 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

UPDATE Employee SET Salary = Salary + Amt
WHERE EmployeeID = EmpID;
RETURN Amt

END

Looking Up Data
CREATE FUNCTION IncreaseSalary

(EmpID INTEGER, Amt CURRENCY)
RETURNS CURRENCY
DECLARE

CURRENCY MaxAmount;
BEGIN

SELECT MaxRaise INTO MaxAmount
FROM CompanyLimits
WHERE Li itN ‘R i ’

6 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

WHERE LimitName = ‘Raise’;

IF (Amt > MaxAmount) THEN
RETURN -1 -- error flag

END
UPDATE Employee SET Salary = Salary + Amt
WHERE EmployeeID = EmpID;
RETURN Amt;

END

Data Trigger Events
INSERT

DELETE

UPDATE

BEFORE AFTER

7 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

 Oracle additions:
 Tables ALTER, CREATE, DROP
 User LOGOFF, LOGON
 Database SERVERERROR, SHUTDOWN, STARTUP

Statement v. Row Triggers

UPDATE Employee
SET Salary = Salary + 10000
WHERE EmployeeID=442
OR EmployeeID=558

SQL

Before Update After UpdateTriggers for overall table

8 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

time

Before Update
On table

p
On table

Before Update
Row 442

After Update
Row 442

Update
Row 442

… other rows

Triggers for overall table

Triggers for each row

Data Trigger Example

CREATE TRIGGER LogSalaryChanges
AFTER UPDATE OF Salary ON Employee
REFERENCING OLD ROW as oldrow

NEW ROW AS newrow
FOR EACH ROW

INSERT INTO SalaryChanges
(E ID Ch D t U OldV l N V l)

9 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

(EmpID, ChangeDate, User, OldValue, NewValue)
VALUES
(newrow.EmployeeID, CURRENT_TIMESTAMP,
CURRENT_USER, oldrow.Salary, newrow.Salary);

Canceling Data Changes in
Triggers

CREATE TRIGGER TestDeletePresident
BEFORE DELETE ON Employee
REFERENCING OLD ROW AS oldrow
FOR EACH ROW

WHEN (oldrow.Title = ‘President’)
SIGNAL _CANNOT_DELETE_PRES;

10 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

Cascading Triggers
Sale(SaleID, SaleDate, …)

Inventory(ItemID, QOH, …)

SaleItem(SaleID, ItemID, Quantity, …)
AFTER INSERT

UPDATE Inventory
SET QOH = QOH – newrow.Quantity

AFTER UPDATE

11 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

OrderItem(OrderID, ItemID, Quantity, …)

Order(OrderID, OrderDate, …)

AFTER UPDATE
WHEN newrow.QOH < newrow.Reorder

INSERT {new order}
INSERT {new OrderItem}

Trigger Loop
Employee(EID, Salary)

BonusPaid(EID, BonusDate, Amount)

AFTER UPDATE
IF newrow.Salary > 100000 THEN

Add Bonus
END

AFTER UPDATE Or INSERT
IF newrow.Bonus > 50000 THEN

Reduce Bonus

12 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

StockOptions(EID, OptionDate, Amount, SalaryAdj)

Reduce Bonus
Add Options

END

AFTER UPDATE Or INSERT
IF newrow.Amount > 100000 THEN

Reduce Salary
END

Transactions
 Some transactions result in multiple

changes.
 These changes must all be completed

successfully, or the group must fail.
Protection for hardware and

communication failures.
Example: bank customer transfers

money from savings account to

Savings Accounts

Inez: 5340.92
4340.92

Checking Accounts

$1000

13 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

y g
checking account.
Decrease savings balance
 Increase checking balance
Problem if one transaction and

machine crashes.
 Possibly: give users a chance to

reverse/undo a transaction.
 Performance gain by executing

transactions as a block.

Inez: 1424.27

Transaction
1. Subtract $1000 from savings.

(machine crashes)
2. Add $1000 to Checking.

(money disappears)

Transaction Steps

Steps Savings Balance Checking Balance
0. Start 5,340.92 1,424.27
1. Subtract 1,000 4,340.92 1,424.27
2. Add 1,000 4,340.92 2,424.27

Problem arises if transaction is not completed

14 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

p
1. Subtract 1,000 4,340.92 1,424.27
2. Machine crashes 1,000 is gone

Defining Transactions

The computer needs to be told which changes
must be grouped into a transaction.
Turn on transaction processing.
Signify a transaction start.
Signify the end.

15 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

g y
Success: save all changes
Failure: cancel all changes

Must be set in module code
Commit
Rollback

SQL Transaction Code
CREATE FUNCTION TransferMoney(Amount Currency, AccountFrom Number,

AccountTo Number) RETURNS NUMBER
curBalance Currency;
BEGIN

DECLARE HANDLER FOR SQLEXCEPTION
BEGIN

ROLLBACK;
Return -2; -- flag for completion error

END;
START TRANSACTION; -- optional

16 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

SELECT CurrentBalance INTO curBalance
FROM Accounts WHERE (AccountID = AccountFrom);
IF (curBalance < Amount) THEN

RETURN -1; -- flag for insufficient funds
END IF
UPDATE Accounts
SET CurrentBalance = CurrentBalance – Amount
WHERE AccountID = AccountFrom;
UPDATE Accounts
SET CurrentBalance = CurrentBalance + Amount
WHERE AccountID = AccountTo;
COMMIT;
RETURN 0; -- flag for success

END;

SAVEPOINT

START TRANSACTION;
SELECT

time

start
Required elements

SAVEPOINT
StartOptional

Risky steps
commit

Partial
rollback

17 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

SELECT …
UPDATE …
SAVEPOINT StartOptional;
UPDATE …
UPDATE …
If error THEN

ROLLBACK TO SAVEPOINT StartOptional;
END IF
COMMIT;

Concurrent Access
 Concurrent Access

Multiple users or
processes changing the
same data at the same
time.

Final data will be
wrong!

 Force sequential

 Two processes
Receive payment ($200)
Place new order ($150)

 Initial balance $800
Result should be $800 -

200 + 150 = $750
 Interference result is

18 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

 Force sequential
Locking
Delayed, batch updates

either $600 or $950

ID Balance
Jones $800

$600
$950

Customers

1) Read balance 800
2) Subtract pmt -200
4) Save new bal. 600

3) Read balance 800
5) Add order 150
6) Write balance 950

Receive Payment Place New Order

Concurrent Access Steps

Receive Payment Balance Place New Order
1. Read balance 800
2. Subtract Pmt. -200

4. Save balance 600

800

600

950

3. Read balance 800

5. Add order 150
6. Write balance 950

19 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

Pessimistic Locks:
Serialization

 One answer to concurrent access is to prevent it.
 When a transaction needs to alter data, it places a

SERIALIZABLE lock on the data used, so no other
transactions can even read the data until the first
transaction is completed.

20 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

ID Balance
Jones $800

$600

Customers

1) Read balance 800
2) Subtract pmt -200
4) Save new bal. 600

3) Read balance
Receive error
message that it is
locked.

Receive Payment Place New Order

SET TRANSACTION SERIALIZABLE, READ WRITE

SQL Pessimistic Lock

CREATE FUNCTION ReceivePayment (
AccountID NUMBER, Amount Currency) RETURNS NUMBER

BEGIN
DECLARE HANDLER FOR SQLEXCEPTION
BEGIN

ROLLBACK;
RETURN -2;

END

21 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

END
SET TRANSACTION SERIALIZABLE, READ WRITE;
UPDATE Accounts
SET AccountBalance = AccountBalance - Amount
WHERE AccountNumber = AccountID;
COMMIT;
RETURN 0;

END

Serialization Effects

Receive Payment Balance Place New Order

1. Read balance 800
2. Subtract Pmt. -200

4. Save balance 600

800

600

750

3. Read balance
Error: Blocked
3. Read balance 600
4. Add order 150
5 W it b l 750

22 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

5. Write balance 750

Transaction to Transfer
Money

CREATE FUNCTION ReceivePayment (
AccountID NUMBER, Amount Currency) RETURNS

NUMBER
BEGIN

DECLARE HANDLER FOR SQLEXCEPTION
BEGIN

ROLLBACK;
RETURN 2

23 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

RETURN -2;
END
SET TRANSACTION SERIALIZABLE, READ WRITE;
UPDATE Accounts
SET AccountBalance = AccountBalance - Amount
WHERE AccountNumber = AccountID;
COMMIT;
RETURN 0;

END

Deadlock

Deadlock
Two (or more)

processes have placed
locks on data and are
waiting for the other’s Data A Data B

1) Lock Data A
3) Wait for Data B

24 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

g
data.

Many solutions
Random wait time
Global lock manager
Two-phase commit -

messages

Data A Data B

2) Lock Data B
4) Wait for Data A

Deadlock Sequence

Process 1 Data A Data B Process2
1. Lock Data A

3. Wait for Data B
Locked

by 1
Locked

by 2
2. Lock Data B

4. Wait for Data A

25 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

Optimistic Locks
Assume that collisions are rare
 Improved performance, fewer resources
Allow all code to read any data (no locks)
When code tries to write a new value
Lock the records

Ch k t if th i ti l i diff t

26 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

Check to see if the existing value is different
from the one you were given earlier
If it is different, someone changed the

database before you finished, so it is a
collision--raise an error and unlock
Try again

Optimistic Locks for Simple
Update
 (1) Read the balance and save it (e.g., to

initial-value_buffer)
 (2) Prepare the new computed value
 (3) Write the new value to a buffer (e.g., new-

value_buffer)
 (4) LOCK the resources involved

27 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

 (4) LOCK the resources involved
 (5) Check for errors by comparing the initial-

value_buffer to the currentvalue in the
database
(5a) If initial-value_buffer <> currentvalue,

UNLOCK and go back to step (1).
(5b) If initial-value_buffer = currentvalue

then write new-value_buffer into
currentvalue and UNLOCK

Optimistic Locks with SQL
CREATE FUNCTION ReceivePayment (

AccountID NUMBER, Amount Currency) RETURNS NUMBER
oldAmount Currency;
testEnd Boolean = FALSE;
BEGIN

DO UNTIL testEnd = TRUE
BEGIN

SELECT Amount INTO oldAmount
WHERE AccountNumber = AccountID;
…

28 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

UPDATE Accounts
SET AccountBalance = AccountBalance - Amount
WHERE AccountNumber = AccountID
AND Amount = oldAmount;
COMMIT;
IF SQLCODE = 0 and nrows > 0 THEN

testEnd = TRUE;
RETURN 0;

END IF
-- keep a counter to avoid infinite loops

END
END

This is the
comparison
of current

value vs old
value

