
DB Integrity &
Transactions

Part 2

1 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

IS240 – DBMS
Lecture #12 – 2010-04-12

M. E. Kabay, PhD, CISSP-ISSMP
Assoc. Prof. Information Assurance

School of Business & Cyber Studies, Norwich University
mailto:mkabay@norwich.edu V: 802.479.7937

Objectives
Define elements of ACID transactions
Atomicity
Consistency
Isolation
Durability

2 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

Define SQL Isolation Levels
What are phantom rows and how do we avoid

them?
How are internal key values generated and

used in updates in the face of concurrency?
What is the purpose of database cursors?

Topics

ACID Transactions
SQL 99/2003 Isolation Levels
Phantom Rows
Generated Keys

3 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

Database Cursors
Sally’s Pet Store Inventory

ACID Transactions

Atomicity: all changes succeed or fail
together.

Consistency: all data remain internally
consistent (when committed) and can be

4 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

validated by application checks.

Isolation: The system gives each transaction
the perception that it is running in isolation.
There are no concurrent access issues.

Durability: When a transaction is committed,
all changes are permanently saved even if
there is a hardware or system failure.

SQL 99/2003 Isolation
Levels
 READ UNCOMMITTED

Problem: might read dirty data that is rolled back
Restriction: not allowed to save any data

 READ COMMITTED
Problem: Second transaction might change or delete

data

5 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

Restriction: Need optimistic concurrency handling
 REPEATABLE READ

Problem: Phantom rows caused by concurrent access
 SERIALIZABLE

Provides same level of control as if all transactions were
run sequentially.

But, still might encounter locks and deadlocks
Remember to LOCK in SAME ORDER and UNLOCK

in REVERSE ORDER!

Phantom Rows
SELECT SUM(QOH)
FROM Inventory
WHERE Price BETWEEN 10 and 20
Result: 5 + 4 + 8 = 17

INSERT INTO Inventory
VALUES (121, 7, 16)
INSERT INTO Inventory
VALUES (122 3 14)

155111
PriceQOHItemIDIncluded

in first
query

ALICE

BOB

6 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

VALUES (122, 3, 14)

SELECT SUM(QOH)
FROM Inventory
WHERE Price BETWEEN 10 and 20
Result: 5 + 4 + 8 + 7 + 3 = 27

Additional or changed
rows will be included in
the second query,
which may cause
contradictions in results178120

167121
143122

227119
124118
3012117
76113

que y

ALICE

Generated Keys

Create an order for a new customer:

(1) Create new key for CustomerID

(2) INSERT row into Customer

Customer Table

CustomerID, Name, …

Order Table

7 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

(3) Create key for new OrderID

(4) INSERT row into Order

Order Table

OrderID, CustomerID, …

Problem: What if someone concurrently generates another autokey
just as you are trying to use the one you created?

Generally the DBMS remembers only the latest autokey!

Methods to Generate Keys
1. The DBMS generates key values automatically

whenever a row is inserted into a table.
 Drawback: it is tricky to get the generated

value to use it in a second table.
2. A separate key generator is called by a

programmer to create a new key for a specified

8 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

programmer to create a new key for a specified
table.
 Drawback: programmers have to write code

to generate a key for every table and each
row insertion.

 Overall drawbacks: neither method is likely
to be transportable. If you change the DBMS,
you will have to rewrite the procedures to
generate keys.

Auto-Generated Keys

 Create an order for a new customer:
1. INSERT row into Customer
2. Get the key value that was generated
3. Verify the key value is correct. How?
4. INSERT row into Order

9 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

 Major problem:
 Step 2 requires that the DBMS return the key

value that was most recently generated.
 How do you know it is the right value?
 What happens if two transactions generate keys

at almost the same time on the same table?

Key-Generation Routine

 Create an order for a new customer:
 Generate a key for CustomerID
 INSERT row into Customer
 Generate a key for OrderID
 INSERT row into Order

10 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

 INSERT row into Order
 This method ensures that unique keys are

generated
 You can use the keys in multiple tables

because you know the value
 But none of it is automatic
 Always requires procedures and

sometimes data triggers

Topics

ACID Transactions
SQL 99/2003 Isolation Levels
Phantom Rows
Generated Keys

11 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

Database Cursors
Sally’s Pet Store Inventory

Purpose
Track through table or

query one row at a time.
Data cursor is a pointer to active

Database Cursors

Year Sales
1998 104,321
1999 145,998
2000 276,004
2001 362,736

12 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

Data cursor is a pointer to active
row.

Why?
Performance.
SQL cannot do everything.
Complex calculations.
Compare multiple rows.

Database Cursor Program
Structure

DECLARE cursor1 CURSOR FOR
SELECT AccountBalance
FROM Customer;

sumAccount, balance Currency;
SQLSTATE Char(5);
BEGIN

sumAccount = 0;
OPEN 1

13 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

OPEN cursor1;
WHILE (SQLSTATE = ‘00000’)
BEGIN

FETCH cursor1 INTO balance;
IF (SQLSTATE = ‘00000’) THEN

sumAccount = sumAccount + balance;
END IF

END
CLOSE cursor1;
-- display the sumAccount or do a calculation

END

Cursor Positioning with
FETCH

DECLARE cursor2 SCROLL CURSOR FOR
SELECT …
OPEN cursor2;
FETCH LAST FROM cursor2 INTO …
Loop…

FETCH PRIOR FROM cursor2 INTO …
E d l

14 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

End loop
CLOSE cursor2;

FETCH positioning options:
FETCH NEXT next row
FETCH PRIOR prior row
FETCH FIRST first row
FETCH LAST last row
FETCH ABSOLUTE 5 fifth row
FETCH RELATIVE -3 back 3 rows

Problems with Multiple
Users

Name Sales
Alice 444,321
Carl 254,998
Donna 652,004
Ed 411,736

Original Data

Name Sales
Alice 444,321
Bob 333,229
Carl 254,998
Donna 652,004
Ed 411,736

Modified Data

New row is
added--while
code is running.

15 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

The SQL standard can prevent this problem with the
INSENSITIVE option:

DECLARE cursor3 INSENSITIVE CURSOR FOR …

But this is an expensive approach because the
DBMS usually makes a copy of the data.
Instead, avoid moving backwards.

Changing Data with Cursors

Year Sales Gain
2000 151,039
2001 179,332
2002 195,453
2003 221,883
2004 223,748

DECLARE cursor1 CURSOR FOR
SELECT Year, Sales, Gain
FROM SalesTotal
ORDER BY Year
FOR UPDATE OF Gain;
priorSales, curYear, curSales, curGain
BEGIN

priorSales = 0;

16 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

OPEN cursor1;
Loop:

FETCH cursor1 INTO curYear, curSales, curGain
UPDATE SalesTotal
SET Gain = Sales – priorSales
WHERE CURRENT OF cursor1;
priorSales = curSales;

Until end of rows
CLOSE cursor1;
COMMIT;

END

Sally’s Pet Store Inventory

 Inventory method 1: calculate the current
quantity on hand by totaling all purchases
and sales every time the total is needed.
Drawback: performance

 Inventory method 2: keep a running balance

17 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

 Inventory method 2: keep a running balance
in the inventory table and update it when an
item is purchased or sold.
Drawback: tricky code

 Also, you need an adjustment process for
“inventory shrink”
 Corrections of mistakes

Inventory QuantityOnHand

ItemID
Description
QuantityOnHand
ListPrice
Category

Merchandise

Add items purchased

Subtract items sold

Adjust for shrink

18 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

SaleID
ItemID
Quantity
SalePrice

SaleItem

Inventory Events
 For a new sale, a row is added

to the SaleItem table.
 A sale or an item could be

removed because of a clerical
error or the customer changes
his or her mind. A SaleItem row
will be deleted.

SaleID
ItemID
Quantity
SalePrice

SaleItem

19 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

 An item could be returned, or
the quantity could be adjusted
because of a counting error.
The Quantity is updated in the
SaleItem table.

 An item is entered incorrectly.
ItemID is updated in the
SaleItem table.

A USER MAY

• Add a row.

• Delete a row.

• Update Quantity.

• Update ItemID.

New Sale: Insert SaleItem
Row

CREATE TRIGGER NewSaleItem
AFTER INSERT ON SaleItem
REFERENCING NEW ROW AS newrow
FOR EACH ROW

UPDATE Merchandise

20 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

SET QuantityOnHand = QuantityOnHand – newrow.Quantity
WHERE ItemID = newrow.ItemID;

Delete SaleItem Row

CREATE TRIGGER DeleteSaleItem
AFTER DELETE ON SaleItem
REFERENCING OLD ROW AS oldrow
FOR EACH ROW

UPDATE Merchandise

21 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

SET QuantityOnHand =
QuantityOnHand + oldrow.Quantity

WHERE ItemID = oldrow.ItemID;

Inventory Update Sequence
SaleItem Clerk Event Code Merchandise

SaleID 101
ItemID 15
Quantity 10

Quantity 8

1. Enter new sale
item, enter
Quantity of 10.

3. Change Quantity
to 8.

2. Subtract Quantity
10 from QOH.

4. Subtract Quantity
8 from QOH.

ItemID 15
QOH 50

QOH 40

QOH 32

OOPS

22 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

Solution that corrects for change

SaleID 101
ItemID 15
Quantity 10

Quantity 8

1. Enter new sale
item, enter
Quantity of 10.

3. Change Quantity
to 8.

2. Subtract Quantity
10 from QOH.

4. Add original
Quantity 10 back
and subtract
Quantity 8 from
QOH.

ItemID 15
QOH 50

QOH 40

QOH 42

Quantity Changed Event

CREATE TRIGGER UpdateSaleItem
AFTER UPDATE ON SaleItem
REFERENCING OLD ROW AS oldrow

NEW ROW AS newrow
FOR EACH ROW

23 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

UPDATE Merchandise
SET QuantityOnHand =

QuantityOnHand
+ oldrow.Quantity
– newrow.Quantity

WHERE ItemID = oldrow.ItemID;

ItemID or Quantity Changed
Event

CREATE TRIGGER UpdateSaleItem
AFTER UPDATE ON SaleItem
REFERENCING OLD ROW AS oldrow

NEW ROW AS newrow
FOR EACH ROW
BEGIN

UPDATE Merchandise

24 Copyright © 2010 Jerry Post with additions by M. E. Kabay. All rights reserved.

UPDATE Merchandise
SET QuantityOnHand = QuantityOnHand + oldRow.Quantity
WHERE ItemID = oldrow.ItemID;
UPDATE Merchandise
SET QuantityOnHand = QuantityOnHand – newRow.Quantity
WHERE ItemID = newrow.ItemID;
COMMIT;

END

