Chapter 2 Introduction to Structured Query Language 91

Wow! That was a full chapter!

Structured Query Language (SQL) was developed by
IBM and has been endorsed by the ANSI SQL-92 and follow-
ing standards. SQL is a data sublanguage that can be embed-
ded into full programming languages or submitted directly to
the DBMS. Knowing SQL is critical for knowledge workers,
application programmers, and database administrators.

All DBMS products process SQL. Microsoft Access hides
SQL, but Microsoft SQL Server, Oracle Database, and MySQL
require that you use it.

We are primarily interested in five categories of SQL
statements: DML, DDL, SQL/PSM statements, TCL, and
DCL. DML statements include statements for querying data
and for inserting, updating, and deleting data. This chap-
ter addresses only DML query statements. Additional DML
statements, DDL and SQL/PSM are discussed in Chapter 7.
TCL and DCL are discussed in Chapter 9.

The examples in this chapter are based on three tables ex-
tracted from the operational database at Cape Codd Outdoor
Sports. Such database extracts are common and important.
Sample data for the three tables is shown in Figure 2-5.

The basic structure of an SQL query statement is
SELECT/FROM/WHERE. The columns to be selected are
listed after SELECT, the table(s) to process is listed after
FROM, and any restrictions on data values are listed after
WHERE. In a WHERE clause, character and date data values
must be enclosed in single quotes. Numeric data need not be

enclosed in quotes. You can submit SQL statements directly
to Microsoft Access, Microsoft SQL Server, Oracle Database,
and MySQL, as described in this chapter.

This chapter explained the use of the following SQL
clauses: SELECT, FROM, WHERE, ORDER BY, GROUP BY,
and HAVING. This chapter explained the use of the following
SQL keywords: DISTINCT, DESC, ASC, AND, OR, IN, NOT IN,
BETWEEN, LIKE, % (* for Microsoft Access), _ (7 for Microsoft
Access), SUM, AVG, MIN, MAX, COUNT, and AS. You should
know how to mix and match these features to obtain the re-
sults you want. By default, the WHERE clause is applied before
the HAVING clause.

You can query multiple tables using subqueries and
joins. Subqueries are nested queries that use the SQL key-
words IN and NOT IN. An SQL SELECT expression is placed
inside parentheses. Using a subquery, you can display data
from the top table only. A join is created by specifying multi-
ple table names in the FROM clause. An SQL WHERE clause
is used to obtain an equijoin. In most cases, equijoins are the
most sensible option. Joins can display data from multiple
tables. In Chapter 8, you will learn another type of subquery
that can perform work that is not possible with joins.

Some people believe the JOIN ON syntax is an easier
form of join. Rows that have no match in the join condi-
tion are dropped from the join results when using a regular,
or INNER, join. To keep such rows, use a LEFT OUTER or
RIGHT OUTER join rather than an INNER join.

/*and */
ad-hoc queries

American National Standards Institute (ANSI)

AVG

business intelligence (BI) systems

correlated subquery
COUNT

CRUD

data control language (DCL)

data definition language (DDL)
data manipulation language (DML)

data mart

data sublanguage

data warehouse

data warehouse DBMS

equijoin

Extensible Markup Language (XML)

Extract, Transform, and Load (ETL) system

graphical user interface (GUI)

inner join

International Organization for
Standardization (ISO)

join

join operation

joining the two tables

MAX

Microsoft Access asterisk (*) wildcard
character

Microsoft Access question mark (?)
wildcard character

92

Part 1

MIN

Getting Started

query by example (QBE)
schema

SQL AND operator

SQL AS keyword

SQL asterisk (*) wildcard character
SQL BETWEEN keyword
SQL built-in functions
SQL comment

SQL DESC keyword
SQL DISTINCT keyword
SQL expression

SQL FROM clause

SQL GROUP BY clause
SQL HAVING clause
SQL IN operator

SQL inner join

SQL INNER JOIN phrase
SQL JOIN keyword

SQL JOIN ON syntax
SQL join operator

SQL LEFT JOIN syntax
SQL left outer join

SQL LIKE keyword

Review Questions

21
2.2
23
24
25

2.6

2.7
2.8
2.9
2.10
2.1
212
213
214
2.15

What is a business intelligence (BI) system?
What is an ad-hoc query?

What does SQL stand for, and what is SQL?
What does SKU stand for? What is an SKU?

SQL NOT IN operator

SQL ON keyword

SQL OR operator

SQL ORDER BY clause

SQL outer join

SQL percent sign (%) wildcard character

SQL query

SQL RIGHT JOIN syntax

SQL right outer join

SQL script file

SQL SELECT clause

SQL SELECT/FROM/WHERE
framework

SQL Server Compatible Syntax (ANSI 92)

SQL TOP {NumberOfRows} property

SQL underscore (_) wildcard character

SQL WHERE clause

SQL/Persistent stored modules (SQL/PSM)

stock-keeping unit (SKU)

Structured Query Language (SQL)

subquery

SUM

TableName.ColumnName syntax

Transaction control language (TCL)

Summarize how data were altered and filtered in creating the Cape Codd data

extraction.

Explain, in general terms, the relationships among the RETAIL_ORDER, ORDER_

ITEM, and SKU_DATA tables.
Summarize the background of SQL.

What is SQL-927 How does it relate to the SQL statements in this chapter?

What features have been added to SQL in versions subsequent to the SQL-92?

Why is SQL described as a data sublanguage?

What does DML stand for? What are DML statements?
What does DDL stand for? What are DDL statements?
What is the SQL SELECT/FROM/WHERE framework?

Explain how Microsoft Access uses SQL.

Explain how enterprise-class DBMS products use SQL.

Chapter 2 Introduction to Structured Query Language 93

The Cape Codd Outdoor Sports sale extraction database has been modified to include
two additional tables, the INVENTORY table and the WAREHOUSE table. The table
schemas for these tables, together with the RETAIL_ORDER, ORDER_ITEM, and SKU_
DATA tables, are as follows:

RETAIL_ORDER (OrderNumber, StoreNumber, StoreZip, OrderMonth, OrderYear,
OrderTotal)

ORDER_ITEM (OrderNumber, SKU, Quantity, Price, ExtendedPrice)

SKU_DATA (SKU, SKU_Description, Department, Buyer)
WAREHOUSE (WarehouselD, WarehouseCity, WarehouseState, Manager, Squarefeet)

INVENTORY (WarehouselD, SKU, SKU_Description, QuantityOnHand,
QuantityOnOrder)

The five tables in the revised Cape Codd database schema are shown in Figure
2-24. The column characteristics for the WAREHOUSE table are shown in Figure 2-25,
and the column characteristics for the INVENTORY table are shown in Figure 2-26.
The data for the WAREHOUSE table are shown in Figure 2-27, and the data for the
INVENTORY table are shown in Figure 2-28.

If at all possible, you should run your SQL solutions to the following questions
against an actual database. A Microsoft Access database named Cape-Codd.accdb is
available on our Web site (www.pearsonhighered.com/kroenke) that contains all the

AN Figure 2-24
—— RETAIL_ORDER ORDER_ITEM
The Cape Codd Database Vo 3 22 7 orden
with the WAREHOUSE and ::::;:""’" =1 ‘:_m
INVENTORY Tables Ordertonth Price
Oroervesr ExtendedPrice
OrderTotal
SKU_DATA
1 * s 1
SKU_Description
Department
Buyer
INVENTORY WAREHOUSE
The INVENTORY | | ™ =2 "
table SKU_Description WarenouseState
QuantityOnHand Manager
QuantityOnOrder SquareFeet
The WAREHOUSE -
| =
table |
AN Figure 2-25 WAREHOUSE
Column
Characteristics Column Name Type Key Required Remarks
for the
Cape Codd WarehouselD Integer Primary Key Yes Surrogate Key
Database
WAREHOUSE WarehouseCity Text (30) Yes
Table
WarehouseState Text (2) Yes
Manager Text (35) No No
SquareFeet Integer No No

AN Figure 2-26

Column Characteristics for
the Cape Codd Database

INVENTORY Table

AN Figure 2-27

Cape Codd Database
WAREHOUSE Table Data

Part 1 Getting Started

INVENTORY

Column Name Type Key Required Remarks

WarehouselD Integer Primary Key, | Yes Surrogate Key
Foreign Key

SKU Integer Primary Key, | Yes Surrogate Key
Foreign Key

SKU_Description Text (35) No Yes

QuantityOnHand Integer No No

QuantityOnOrder Integer No No

WarehouselD | WarehouseCity | WarehouseState Manager SquareFeet
100 Atlanta GA Dave Jones 125,000
200 Chicago IL Lucille Smith 100,000
300 Bangor MA Bart Evans 150,000
400 Seattle WA Dale Rogers 130,000
500 San Francisco | CA Grace Jefferson| 200,000

tables and data for the Cape Codd Outdoor Sports sales data extract database. Also
available on our Web site are SQL scripts for creating and populating the tables for the
Cape Codd database in Microsoft SQL Server, Oracle Database, and MySQL.

2.16 There is an intentional flaw in the design of the INVENTORY table used in these
exercises. This flaw was purposely included in the INVENTORY tables so you can
answer some of the following questions using only that table. Compare the SKU and
INVENTORY tables, and determine what design flaw is included in INVENTORY.
Specifically, why did we include it?

Use only the INVENTORY table to answer Review Questions 2.17 through 2.39:
2.17 Write an SQL statement to display SKU and SKU_Description.
2.18 Write an SQL statement to display SKU_Description and SKU.
2.19 Write an SQL statement to display WarehouselD.
2.20 Write an SQL statement to display unique WarehouselDs.

2.21 Write an SQL statement to display all of the columns without using the SQL asterisk
(*) wildcard character.

2.22 Write an SQL statement to display all of the columns using the SQL asterisk (*) wildcard
character.

2.23 Write an SQL statement to display all data on products having a QuantityOnHand
greater than 0.

2.24 Write an SQL statement to display the SKU and SKU_Description for products having
QuantityOnHand equal to 0.

Chapter 2 Introduction to Structured Query Language

95

WarehouselD SKU SKU_Description QuantityOnHand | QuantityOnOrder
100 100100 Std. Scuba Tank, Yellow 250 0
200 100100 Std. Scuba Tank, Yellow 100 50
300 100100 Std. Scuba Tank, Yellow 100 0
400 100100 Std. Scuba Tank, Yellow 200 0
100 100200 Std. Scuba Tank, Magenta 200 30
200 100200 Std. Scuba Tank, Magenta 75 75
300 100200 Std. Scuba Tank, Magenta 100 100
400 100200 Std. Scuba Tank, Magenta 250 0
100 101100 Dive Mask, Small Clear 0 500
200 101100 Dive Mask, Small Clear 0 500
300 101100 Dive Mask, Small Clear 300 200
400 101100 Dive Mask, Small Clear 450 0
100 101200 Dive Mask, Med Clear 100 500
200 101200 Dive Mask, Med Clear 50 500
300 101200 Dive Mask, Med Clear 475 0
400 101200 Dive Mask, Med Clear 250 250
100 201000 Half-Dome Tent 2 100
200 201000 Half-Dome Tent 10 250
300 201000 Half-Dome Tent 250 0
400 201000 Half-Dome Tent 0 250
100 202000 Half-Dome Tent Vestibule 10 250
200 202000 Half-Dome Tent Vestibule 1 250
300 202000 Half-Dome Tent Vestibule 100 0
400 202000 Half-Dome Tent Vestibule 0 200
100 301000 Light Fly Climbing Harness 300 250
200 301000 Light Fly Climbing Harness 250 250
300 301000 Light Fly Climbing Harness 0 250
400 301000 Light Fly Climbing Harness 0 250
100 302000 Locking Carabiner, Oval 1000 0
200 302000 Locking Carabiner, Oval 1250 0
300 302000 Locking Carabiner, Oval 500 500
400 302000 Locking Carabiner, Oval 0 1000

AN Figure 2-28

Cape Codd Database
INVENTORY Table Data

Part 1

2.25

2.26

2.28

2.30

231

2.32

233

2.34

235

2.36

2.37

2.38

2.39

Getting Started

Write an SQL statement to display the SKU, SKU_Description, and WarehouselD for
products that have a QuantityOnHand equal to 0. Sort the results in ascending order by
WarehouselD.

Write an SQL statement to display the SKU, SKU_Description, and WarehouselD for
products that have a QuantityOnHand greater than 0. Sort the results in descending
order by WarehouselD and in ascending order by SKU.

Write an SQL statement to display SKU, SKU_Description, and WarehouselD for all
products that have a QuantityOnHand equal to 0 and a QuantityOnOrder greater than
0. Sort the results in descending order by WarehouselD and in ascending order by SKU.

Write an SQL statement to display SKU, SKU_Description, and WarehouselD for all
products that have a QuantityOnHand equal to 0 or a QuantityOnOrder equal to 0. Sort
the results in descending order by WarehouselD and in ascending order by SKU.

Write an SQL statement to display the SKU, SKU_Description, WarehouselD, and
QuantityOnHand for all products having a QuantityOnHand greater than 1 and less
than 10. Do not use the BETWEEN keyword.

Write an SQL statement to display the SKU, SKU_Description, WarehouselD, and
QuantityOnHand for all products having a QuantityOnHand greater than 1 and less
than 10. Use the BETWEEN keyword.

Write an SQL statement to show a unique SKU and SKU_Description for all products
having an SKU description starting with 'Half-dome'.

Write an SQL statement to show a unique SKU and SKU_Description for all products
having a description that includes the word 'Climb’.

Write an SQL statement to show a unique SKU and SKU_Description for all products
having a d'in the third position from the left in SKU_Description.

Write an SQL statement that uses all of the SQL built-in functions on the
QuantityOnHand column. Include meaningful column names in the result.

Explain the difference between the SQL built-in functions COUNT and SUM.

Write an SQL statement to display the WarehouselD and the sum of QuantityOnHand,
grouped by WarehouseID. Name the sum TotalltemsOnHand. Display the results in
descending order of TotalltemsOnHand.

Write an SQL statement to display the WarehouselID and the sum of QuantityOnHand,
grouped by WarehouselD. Omit all SKU items that have 3 or more items on hand from
the sum, and name the sum TotalltemsOnHandLT3. Display the results in descending
order of TotalltemsOnHandLT3.

Write an SQL statement to display the WarehouseID and the sum of QuantityOnHand,
grouped by WarehouselD. Omit all SKU items that have 3 or more items on hand from
the sum, and name the sum TotalltemsOnHandLT3. Show Warehouse ID only for
warehouses having fewer than 2 SKUs in their TotalltemsOnHandLT3. Display the re-
sults in descending order of TotalltemsOnHandLT3.

In your answer to Review Question 2.38, was the WHERE clause or the HAVING clause
applied first? Why?

Use both the INVENTORY and WAREHOUSE tables to answer Review Questions 2.40
through 2.55:

2.40

241

Write an SQL statement to display the SKU, SKU_Description, WarehouselD,
WarehouseCity, and WarehouseState for all items stored in the Atlanta, Bangor, or
Chicago warehouse. Do not use the IN keyword.

Write an SQL statement to display the SKU, SKU_Description, WarehouselD,
WarehouseCity, and WarehouseState for all items stored in the Atlanta, Bangor, or
Chicago warehouse. Use the IN keyword.

Chapter 2 Introduction to Structured Query Language 97

242 Write an SQL statement to display the SKU, SKU_Description, WarehouselD,
WarehouseCity, and WarehouseState of all items not stored in the Atlanta, Bangor, or
Chicago warehouse. Do not use the NOT IN keyword.

243 Write an SQL statement to display the SKU, SKU_Description, WarehouselD,
WarehouseCity, and WarehouseState of all items not stored in the Atlanta, Bangor, or
Chicago warehouse. Use the NOT IN keyword.

2.44 Write an SQL statement to produce a single column called ItemLocation that com-
bines the SKU_Description, the phrase “is in a warehouse in", and WarehouseCity. Do
not be concerned with removing leading or trailing blanks.

2.45 Write an SQL statement to show the SKU, SKU_Description, and WarehouselD for all
items stored in a warehouse managed by 'Lucille Smith'. Use a subquery.

2.46 Write an SQL statement to show the SKU, SKU_Description, and WarehouselD for all
items stored in a warehouse managed by 'Lucille Smith'. Use a join, but do not use JOIN
ON syntax.

2.47 Write an SQL statement to show the SKU, SKU_Description, and WarehouselD for all
items stored in a warehouse managed by 'Lucille Smith'. Use a join using JOIN ON syntax.

2.48 Write an SQL statement to show the WarehouselID and average QuantityOnHand of all
items stored in a warehouse managed by 'Lucille Smith'. Use a subquery.

2.49 Write an SQL statement to show the WarehouselD and average QuantityOnHand of all
items stored in a warehouse managed by Lucille Smith'. Use a join, but do not use JOIN
ON syntax.

2.50 Write an SQL statement to show the WarehouselD and average QuantityOnHand of all
items stored in a warehouse managed by ‘Lucille Smith'. Use a join using JOIN ON syntax.

2.51 Write an SQL statement to display the WarehouselD, the sum of QuantityOnOrder, and
the sum of QuantityOnHand, grouped by WarehouselID and QuantityOnOrder. Name
the sum of QuantityOnOrder as TotalltemsOnOrder and the sum of QuantityOnHand
as TotalltemsOnHand.

2.52 Write an SQL statement to show the WarehouselD, WarehouseCity, WarehouseState,
Manager, SKU, SKU_Description, and QuantityOnHand of all items with a Manager of
"Lucille Smith. Use a join.

2.53 Explain why you cannot use a subquery in your answer to Review Question 2.51.
2.54 Explain how subqueries and joins differ.

2.55 Write an SQL statement to join WAREHOUSE and INVENTORY and include all rows of
WAREHOUSE in your answer, regardless of whether they have any INVENTORY. Run
this statement.

Project Questions

For this set of project questions, we will extend the Microsoft Access database for
the Wedgewood Pacific Corporation (WPC) that we created in Chapter 1. Founded
in 1957 in Seattle, Washington, WPC has grown into an internationally recognized
organization. The company is located in two buildings. One building houses the
Administration, Accounting, Finance, and Human Resources departments, and the
second houses the Production, Marketing, and Information Systems departments.

98 Part 1 Getting Started

The company database contains data about company employees, departments,
company projects, company assets such as computer equipment, and other aspects
of company operations.

In the following project questions, we have already created the WPC.accdb
database with the following two tables (see Chapter 1 Project Questions):

DEPARTMENT (DepartmentName, BudgetCode, OfficeNumber, Phone)
EMPLOYEE (EmployeeNumber, FirstName, LastName, Department, Phone, Email)

Now we will add in the following two tables:

PROJECT (ProjectlD, Name, Department, MaxHours, StartDate, EndDate)
ASSIGNMENT (ProjectlD, EmploveeNumber, HoursWorked)

The four tables in the revised WPC database schema are shown in Figure 2-29,
The column characteristics for the PROJECT table are shown in Figure 2-30, and the
column characteristics for the ASSIGNMENT table are shown in Figure 2-32. Data for
the PROJECT table are shown in Figure 2-31, and the data for the ASSIGNMENT table
are shown in Figure 2-33.

,“' Figure 2-29 2.56 Figure 2-30 shows the column characteristics for the WPC PROJECT table. Using the
The WPC Database column characteristics, create the PROJECT table in the WPC.accdb database.
with the PROJECT and
ASSIGNMENT Tables
The PROJECT > PROJECT
tab‘e ¥ Projecti0 L
DEPARTMENT Name ASSIGNMENT
W’m ¥ Project!
The ASSIGNMENT | | o] T :.;::m -
table OfficeNumber HoursWorked
Phone
EMPLOVYEE
¥ tmployeeNumber
FirstName
LastName
Department
Phone
Email
AN Figure 2-30
Column Characteristics
for the WPC Database
PROJECT Table
PROJECT
Column Name Type Key Required Remarks
ProjectlD Number Primary Key Yes Long Integer
Name Text (50) No Yes
Department Text (35) Foreign Key Yes
MaxHours Number No Yes Double
StartDate .| Date No No
EndDate Date No No

AN Figure 2-31
Sample Data

for the WPC
Database
PROJECT Table

AN Figure 2-32
Column
Characteristics for
the WPC Database
ASSIGNMENT
Table

AN Figure 2-33

Sample Data for the
WPC Database
ASSIGNMENT Table

Chapter 2

Introduction to Structured Query Language

ProjectID Name Department MaxHours | StartDate | EndDate
1000 2013 Q3 Product Plan Marketing 135.00 10-MAY-13 | 15-JUN-13
1100 2013 Q8 Portfolio Analysis | Finance 120.00 07-JUL-13 | 25-JUL-13
1200 2013 Q3 Tax Preparation Accounting 145.00 10-AUG-13 | 15-OCT-13
1300 2013 Q4 Product Plan Marketing 150.00 10-AUG-13 | 15-SEP-13
1400 2013 Q4 Portfolio Analysis | Finance 140.00 05-OCT-13

ASSIGNMENT

Column Name Type Key Required Remarks ‘

ProjectiD Number Primary Key, | Yes Long Integer
Foreign Key
EmployeeNumber Number Primary Key, | Yes Long Integer
Foreign Key
HoursWorked Number No No Double .
ProjectiD EmployeeNumber HoursWorked
1000 1 30.0
1000 8 75.0
1000 10 55.0
1100 4 40.0
1100 6 45.0
1100 1 25.0
1200 2 20.0
1200 4 45.0
1200 5 40.0
1300 1 35.0
1300 8 80.0
1300 10 50.0
1400 4 15.0
1400 5 10.0
1400 6 27.5

100

Part 1

2.57

2.58

2.59

2.60

2.61

2.62

2,63

2.64

Getting Started

Create the relationship and referential integrity constraint between PROJECT and
DEPARTMENT. Enable enforcing of referential integrity and cascading of data updates,
but do not enable cascading of data from deleted records.

Figure 2-31 shows the data for the WPC PROJECT table. Using the Datasheet view, en-
ter the data shown in Figure 2-31 into your PROJECT table.

Figure 2-32 shows the column characteristics for the WPC ASSIGNMENT table.
Using the column characteristics, create the ASSIGNMENT table in the WPC.accdb
database.

Create the relationship and referential integrity constraint between ASSIGNMENT and
EMPLOYEE. Enable enforcing of referential integrity, but do not enable either cascad-
ing updates or the cascading of data from deleted records.

Create the relationship and referential integrity constraint between ASSIGNMENT and
PROJECT. Enable enforcing of referential integrity and cascading of deletes, but do not
enable cascading updates.

Figure 2-33 shows the data for the WPC ASSIGNMENT table. Using the Datasheet
view, enter the data shown in Figure 2-33 into your ASSIGNMENT table.

In Review Question 2.58, the table data was entered after referential integrity con-
straints were created in Review Question 2.57. In Review Question 2.62, the table data
was entered after referential integrity constraints were created in Review Questions
2.59 and 2.60. Why was the data entered after the referential integrity constraints were
created instead of before the constraints were created?

Using Microsoft Access SQL, create and run queries to answer the following questions.
Save each query using the query name format SQL-Query-02-##, where the ## sign is
replaced by the letter designator of the question. For example, the first query will be
saved as SQL-Query-02-A.

A. What projects are in the PROJECT table? Show all information for each project.

B. What are the ProjectID, Name, StartDate, and EndDate values of projects in the
PROJECT table?

C. What projects in the PROJECT table started before August 1, 2013? Show all the
information for each project.

D. What projects in the PROJECT table have not been completed? Show all the infor-
mation for each project.

E. Who are the employees assigned to each project? Show ProjectID, EmployeeNumber,
LastName, FirstName, and Phone.

F. Who are the employees assigned to each project? The ProjectID, Name, and
Department. Show EmployeeNumber, LastName, FirstName, and Phone.

G. Who are the employees assigned to each project? Show ProjectID, Name,
Department, and Department Phone. Show EmployeeNumber, LastName,
FirstName, and Employee Phone. Sort by ProjectID, in ascending order.

H. Who are the employees assigned to projects run by the marketing department? Show
ProjectID, Name, Department, and Department Phone. Show EmployeeNumber,
LastName, FirstName, and Employee Phone. Sort by ProjectID, in ascending order.

I. How many projects are being run by the marketing department? Be sure to assign
an appropriate column name to the computed results.

J. What is the total MaxHours of projects being run by the marketing department? Be
sure to assign an appropriate column name to the computed results.

K. What is the average MaxHours of projects being run by the marketing department?
Be sure to assign an appropriate column name to the computed results.

Chapter 2

Introduction to Structured Query Language 101

L. How many projects are being run by each department? Be sure to display each

DepartmentName and to assign an appropriate column name to the computed results.

Write an SQL statement to join EMPLOYEE, ASSIGNMENT, and PROJECT using
the JOIN ON syntax. Run this statement.

. Write an SQL statement to join EMPLOYEE and ASSIGNMENT and include all rows

of EMPLOYEE in your answer, regardless of whether they have an ASSIGNMENT.
Run this statement.

2.65 Using Microsoft Access QBE, create and run new queries to answer the questions in
Project Question 2.64. Save each query using the query name format QBE-Query-02-2#,
where the ## sign is replaced by the letter designator of the question. For example, the
first query will be saved as QBE-Query-02-A.

The following questions refer to the NDX table data as described starting on page 74.
You can obtain a copy of this data in the Microsoft Access database DBP-e13-NDX
.accdb from the text's Web site (www.pearsonhighered.com/kroenke).

2.66 Write SQL queries to produce the following results:

A.
B.

C
D.
E

H.

The ChangeClose on Fridays.

The minimum, maximum, and average ChangeClose on Fridays.

. The average ChangeClose grouped by TYear. Show TYear.

The average ChangeClose grouped by TYear and TMonth. Show TYear and TMonth.

. The average ChangeClose grouped by TYear, TQuarter, TMonth shown in descending

order of the average (you will have to give a name to the average in order to sort by it).
Show TYear, TQuarter, and TMonth. Note that months appear in alphabetical and not
calendar order. Explain what you need to do to obtain months in calendar order.

. The difference between the maximum ChangeClose and the minimum ChangeClose

grouped by TYear, TQuarter, TMonth shown in descending order of the difference
(you will have to give a name to the difference in order to sort by it). Show TYear,
TQuarter, and TMonth.

. The average ChangeClose grouped by TYear shown in descending order of the aver-

age (you will have to give a name to the average in order to sort by it). Show only
groups for which the average is positive.

Display a single field with the date in the form day/month/year. Do not be con-
cerned with trailing blanks.

2.67 It is possible that volume (the number of shares traded) has some correlation with the
direction of the stock market. Use the SQL you have learned in this chapter to investigate
this possibility. Develop at least five different SQL statements in your investigation.

Case Questions

Marcia’s Dry Cleaning Case Questions

Marcia Wilson owns and operates Marcias Dry Cleaning, which is an upscale dry cleaner in a
well-to-do suburban neighborhood. Marcia makes her business stand out from the competi-
tion by providing superior customer service. She wants to keep track of each of her customers
and their orders. Ultimately, she wants to notify them that their clothes are ready via e-mail. To

102

Part 1 Getting Started

provide this service, she has developed an initial database with several tables. Three of those
tables are the following:

CUSTOMER (CustomerlD, FirstName, LastName, Phone, Email)
INVOICE (InvoiceNumber, CustomerNumber, Dateln, DateOut, TotalAmount)

INVOICE_ITEM (InvoiceNumber, ItemNumber, Item, Quantity, UnitPrice)

In the database schema above, the primary keys are underlined and the foreign keys are shown
in italics. The database that Marcia has created is named MDC, and the three tables in the
MDC database schema are shown in Figure 2-34.

The column characteristics for the tables are shown in Figures 2-35, 2-36, and 2-37. The
relationship between CUSTOMER and INVOICE should enforce referential integrity, but not
cascade updates nor deletions, while the relationship between INVOICE and INVOICE_ITEM
should enforce referential integrity and cascade both updates and deletions. The data for these
tables are shown in Figures 2-38, 2-39, and 2-40.

We recommend that you create a Microsoft Access 2013 database named MDC-CHOZ2.
accdb using the database schema, column characteristics, and data shown above and then use
this database to test your solutions to the questions in this section. Alternatively, SQL scripts
for creating the MDC-CH02 database in Microsoft SQL Server, Oracle Database, and MySQL are
available on our Web site at www.,pearsonhighered.com/kroenke.

Write SQL statements and show the results based on the MDC data for each of the following:

AN Figure 2-34 A. Show all data in each of the tables.
TK MDC Database B. List the LastName, FirstName, and Phone of all customers.
The CUSTOMER & CUSTOMER
table ¥ CustomeriD L
FirstName INVOICE
LastName ¥ InvoiceNumber C
Phone = CustomerNumber INVOICE_ITEM
o Datein = ¥ InvoiceNumber
/ DateOut ¥ temNumber ‘
Totalamount Rew
Quantity
The lNVOlCE L— UnitPrice
table ===
The INVOICE_ITEM |
table
AN Figure 2-35
Column Characteristics
for the MDC Database
CUSTOMER Table
CUSTOMER
CustomerlD AutoNumber Primary Key | Yes Surrogate Key
FirstName Text (25) No Yes
LastName Text (25) No Yes
Phone Text (12) No No
Email Text (100) No No

Chapter 2 Introduction to Structured Query Language

103

INVOICE
Column Name Type Key Required Remarks
InvoiceNumber Number Primary Key Yes Long Integer
CustomerNumber Number Foreign Key Yes Long Integer
AN Figure 2-36 | Dateln Date No Yes
Column
Characteristics DateOut Date No No
for the MDC
Database TotalAmount Currency No No Two Decimal Places
INVOICE Table
INVOICE_ITEM
Column Name Type Key Required Remarks
InvoiceNumber Number Primary Key, | Yes Long Integer
Foreign Key
ItemNumber Number Primary Key Yes Long Integer
Item Text (50) No Yes
Quantity Number No Yes Long Integer
UnitPrice Currency No Yes Two Decimal Places
AN Figure 2-37
Column Characteristics C. List the LastName, FirstName, and Phone for all customers with a FirstName of 'Nikki'.
for the MDC Database
INVOICE_ITEM Table D. List the LastName, FirstName, Phone, Dateln, and DateOut of all orders in excess of
$100.00.
E. List the LastName, FirstName, and Phone of all customers whose first name starts with 'B'.
AN Figure 2-38 F. List the LastName, FirstName, and Phone of all customers whose last name includes
Sample Data for the MDC the characters 'cat’.
Database CUSTOMER Table
CustomerID | FirstName | LastName Phone Email
1 Nikki Kaccaton 723-543-1233 Nikki.Kaccaton @ somewhere.com
2 Brenda Catnazaro 723-543-2344 Brenda.Catnazaro@somewhere.com
3 Bruce LeCat 723-543-3455 Bruce.LeCat@somewhere.com
1 Betsy Miller 725-654-3211 Betsy.Miller@somewhere.com
5 George Miller 725-654-4322 George.Miller@somewhere.com
6 Kathy Miller 723-514-9877 Kathy.Miller@somewhere.com
7 Betsy Miller 723-514-8766 Betsy.Miller@elsewhere.com

104

AN Figure 2-39
Sample Data for the MDC
Database INVOICE Table

Part 1

Getting Started

InvoiceNumber | CustomerNumber Dateln DateOut | TotalAmount
2013001 1 04-Oct-13 | 06-Oct-13 $158.50
2013002 2 04-Oct-13 | 06-Oct-13 $25.00
2013003 1 06-Oct-13 | 08-Oct-13 $49.00
2013004 - 06-Oct-13 | 08-Oct-13 $17.50
2013005 6 07-Oct-13 11-Oct-13 $12.00
2013006 3 11-Oct-13 13-Oct-13 $152.50
2013007 3 11-Oct-13 13-Oct-13 $7.00
2013008 7 12-Oct-13 14-Oct-13 $140.50
2013009 5 12-Oct-13 14-Oct-13 $27.00

x

ST r X e

. List the LastName, FirstName, and Phone for all customers whose second and third

numbers (from the right) of their phone number are 23.

Determine the maximum and minimum TotalAmount.

Determine the average TotalAmount.

Count the number of customers.

Group customers by LastName and then by FirstName.

Count the number of customers having each combination of LastName and FirstName.

Show the LastName, FirstName, and Phone of all customers who have had an order
with TotalAmount greater than $100.00. Use a subquery. Present the results sorted by
LastName in ascending order and then FirstName in descending order.

Show the LastName, FirstName, and Phone of all customers who have had an order
with TotalAmount greater than $100.00. Use a join, but do not use JOIN ON syntax.
Present results sorted by LastName in ascending order and then FirstName in de-
scending order.

Show the LastName, FirstName, and Phone of all customers who have had an order
with TotalAmount greater than $100.00. Use a join using JOIN ON syntax. Present
results sorted by LastName in ascending order and then FirstName in descending
order.

Show the LastName, FirstName, and Phone of all customers who have had an order
with an Item named Dress Shirt". Use a subquery. Present results sorted by LastName
in ascending order and then FirstName in descending order.

Show the LastName, FirstName, and Phone of all customers who have had an order
with an Item named 'Dress Shirt". Use a join, but do not use JOIN ON syntax. Present
results sorted by LastName in ascending order and then FirstName in descending
order.

Show the LastName, FirstName, and Phone of all customers who have had an order
with an Item named Dress Shirt. Use a join using JOIN ON syntax. Present results
sorted by LastName in ascending order and then FirstName in descending order.

AN Figure 2-40

Sample Data for the

MDC Database

INVOICE_ITEM Table

105

Chapter 2 Introduction to Structured Query Language
InvoiceNumber | KtemNumber Item Quantity | UnitPrice
2013001 1 Blouse 2 $3.50
2013001 2 Dress Shirt 5 $2.50
2013001 3 Formal Gown 2 $10.00
2013001 4 Slacks-Mens 10 $5.00
2013001 5 Slacks-Womens 10 $6.00
2013001 6 Suit-Mens 1 $9.00
2013002 1 Dress Shirt 10 $2.50
2013003 1 Slacks-Mens 5 $5.00
2013003 2 Slacks-Womens 4 $6.00
2013004 1 Dress Shirt i $2.50
2013005 1 Blouse 2 $3.50
2013005 2 Dress Shirt 2 $2.50
2013006 1 Blouse 5 $3.50
2013006 2 Dress Shirt 10 $2.50
2013006 3 Slacks-Mens 10 $5.00
2013006 4 Slacks-Womens 10 $6.00
2013007 1 Blouse 2 $3.50
2013008 1 Blouse 3 $3.50
2013008 2 Dress Shirt 12 $2.50
2013008 3 Slacks-Mens 8 $5.00
2013008 4 Slacks-Womens 10 $6.00
2013009 1 Suit-Mens 3 $9.00

S. Show the LastName, FirstName, Phone, and TotalAmount of all customers who have

had an order with an Item named 'Dress Shirt". Use a combination of a join and a sub-
query. Present results sorted by LastName in ascending order and then FirstName in

descending order.

Show the LastName, FirstName, Phone, and TotalAmount of all customers who have

had an order with an Item named 'Dress Shirt". Also show the LastName, FirstName,
and Phone of all other customers. Present results sorted by LastName in ascending
order, and then FirstName in descending order.

106

The Queen /“\

Anne
Curiosity
Shop

AN Figure 2-41

)\

Part 1 Getting Started

The Queen Anne Curiosity Shop is an upscale home furnishings store in a well-to-do urban neigh-
borhood. It sells both antiques and current-production household items that complement or are
useful with the antiques. For example, the store sells antique dining room tables and new table-
cloths. The antiques are purchased from both individuals and wholesalers, and the new items
are purchased from distributors. The store’s customers include individuals, owners of bed-and-
breakfast operations, and local interior designers who work with both individuals and small busi-
nesses. The antiques are unique, though some multiple items, such as dining room chairs, may
be available as a set (sets are never broken). The new items are not unique, and an item may be
reordered if it is out of stock. New items are also available in various sizes and colors (for example,
a particular style of tablecloth may be available in several sizes and in a variety of colors).

Assume that The Queen Anne Curiosity Shop designs a database with the following
tables:

CUSTOMER (CustomerlD, LastName, FirstName, Address, City, State, ZIP. Phone,
Email)

ITEM (ItemlID, ItemDescription, CompanyName, PurchaseDate, ltemCost,

ItemPrice)
SALE (SalelD, CustomerlD, SaleDate, SubTotal, Tax, Total)
SALE_ITEM (SalelD, SaleltemlD, ltemlD, ItemPrice)

The referential integrity constraints are:

CustomerlD in SALE must exist in CustomerlD in CUSTOMER
SalelD in SALE_ITEM must exist in SalelD in SALE
ItemID in SALE_ITEM must exist in ItemID in ITEM

Assume that CustomerlID of CUSTOMER, ItemID of ITEM, SalelD of SALE, and
SaleltemID of SALE_ITEM are all surrogate keys with values as follows:

CustomerlD Start at |
ItemlID

SalelD

Increment by 1

Start at | Increment by 1

Start at | Increment by 1

The database that The Queen Anne Curiosity Shop has created is named QACS, and the
four tables in the QACS database schema are shown in Figure 2-41.

The column characteristics for the tables are shown in Figures 2-42, 2-43, 2-44, and 2-45.
The relationships CUSTOMER-to-SALE and ITEM-to-SALE_ITEM should enforce referential
integrity, but not cascade updates nor deletions, while the relationship between SALE and
SALE_ITEM should enforce referential integrity and cascade both updates and deletions. The
data for these tables are shown in Figures 2-46, 2-47, 2-48, and 2-49.

The QACS Database
The ITEM table “= s
CUSTOMER
¥ Cuntsmend v :::'m
The CUSTOMER table retisme Santen
s :"m nemCont
fate Rembrice
o — — —
x'
The SALE table
The SALE_ITEM table —————///»

AN Figure 2-42

Chapter 2

Introduction to Structured Query Language

107

Column Characteristics
for the QACS Database

CUSTOMER Table

AN Figure 2-43
Column
Characteristics for
the QACS Database
SALE Table

[) Figure 2-44
Column
Characteristics
for the QACS
Database
SALE_ITEM Table

CUSTOMER

Column Name Type Key Required Remarks

CustomerlD AutoNumber Primary Key | Yes Surrogate Key

LastName Text (25) No Yes

FirstName Text (25) No Yes

Address Text (35) No No

City Text (35) No No

State Text (2) No No

ZIP Text (10) No No

Phone Text (12) No Yes

Email Text (100) No Yes
SALE
Column Name Type Key Required Remarks
SalelD AutoNumber Primary Key Yes Surrogate Key
CustomeriD Number Foreign Key Yes Long Integer
SaleDate Date No Yes
SubTotal Number No No dC:cr::\:?;I:oes
Tax Number No No g:cr;’:::l%:oes
Total Number No No g:cr;r?\r;%I:ces
SALE_ITEM
Column Name Type Key Required Remarks
SalelD Number Primary Key, | Yes Long Integer

Foreign Key

SaleltemID Number Primary Key Yes Long Integer
ltemID Number Number Yes Long Integer
ltemPrice Number No No g:g::;%.fc .

108

AN/ Figure 2-45
Column Characteristics

for the QACS
Database ITEM Table

Part 1 Getting Started

ITEM

Column Name Type Key Required Remarks
ItemID AutoNumber Primary Key | Yes Surrogate Key
IltemDescription Text (255) No Yes

CompanyName Text (100) No Yes

PurchaseDate Date No Yes

ItemCost Number No Yes dc:crir:::{ﬂ:ces
ItemPrice Number No Yes S:cmm:oes

We recommend that you create a Microsoft Access 2013 database named QACS-CHO2.accdb
using the database schema, column characteristics, and data shown above and then use this da-
tabase to test your solutions to the questions in this section. Alternatively, SQL scripts for creat-
ing the QACS-CHO2 database in Microsoft SQL Server, Oracle Database, and MySQL are available
on our Web site at www.pearsonhighered.com/kroenke.

Write SQL statements and show the results based on the QACS data for each of the
following:

A.
B.
C.
D.

2 r X e

Show all data in each of the tables.
List the LastName, FirstName, and Phone of all customers.
List the LastName, FirstName, and Phone for all customers with a FirstName of John..

List the LastName, FirstName, and Phone of all customers with a last name of
Anderson’.

List the LastName, FirstName, and Phone of all customers whose first name starts
with 'D".
List the LastName, FirstName, and Phone of all customers whose last name includes

the characters 'ne’.

List the LastName, FirstName, and Phone for all customers whose second and third
numbers (from the right) of their phone number are 56.

Determine the maximum and minimum sales Total.

Determine the average sales Total.

Count the number of customers.

Group customers by LastName and then by FirstName.

Count the number of customers having each combination of LastName and FirstName.

Show the LastName, FirstName, and Phone of all customers who have had an or-
der with Total greater than $100.00. Use a subquery. Present the results sorted by
LastName in ascending order and then FirstName in descending order.

108

AN/ Figure 2-45
Column Characteristics

for the QACS
Database ITEM Table

Part 1 Getting Started

ITEM

Column Name Type Key Required Remarks
ItemID AutoNumber Primary Key | Yes Surrogate Key
IltemDescription Text (255) No Yes

CompanyName Text (100) No Yes

PurchaseDate Date No Yes

ItemCost Number No Yes dc:crir:::{ﬂ:ces
ItemPrice Number No Yes S:cmm:oes

We recommend that you create a Microsoft Access 2013 database named QACS-CHO2.accdb
using the database schema, column characteristics, and data shown above and then use this da-
tabase to test your solutions to the questions in this section. Alternatively, SQL scripts for creat-
ing the QACS-CHO2 database in Microsoft SQL Server, Oracle Database, and MySQL are available
on our Web site at www.pearsonhighered.com/kroenke.

Write SQL statements and show the results based on the QACS data for each of the
following:

A.
B.
C.
D.

2 r X e

Show all data in each of the tables.
List the LastName, FirstName, and Phone of all customers.
List the LastName, FirstName, and Phone for all customers with a FirstName of John..

List the LastName, FirstName, and Phone of all customers with a last name of
Anderson’.

List the LastName, FirstName, and Phone of all customers whose first name starts
with 'D".
List the LastName, FirstName, and Phone of all customers whose last name includes

the characters 'ne’.

List the LastName, FirstName, and Phone for all customers whose second and third
numbers (from the right) of their phone number are 56.

Determine the maximum and minimum sales Total.

Determine the average sales Total.

Count the number of customers.

Group customers by LastName and then by FirstName.

Count the number of customers having each combination of LastName and FirstName.

Show the LastName, FirstName, and Phone of all customers who have had an or-
der with Total greater than $100.00. Use a subquery. Present the results sorted by
LastName in ascending order and then FirstName in descending order.

a|qeL HIWOLSND aseqeieq
SOVO a8y} 10} ejeQ s|dwes

9p-z 2By W

WOO"2I8YMaS|e ®UOSIOPUY'SOY | £/89-v25-902 | SOL86 | WM omess 3N OAY UILL £289 esoy | uosiepuy ot
woo'aseymesie@Isinbuz BIeID | SS¥9-8ES-09€ | S2286 | VM | weybuieg 19811S UIS| YES Breso 1sinbug 6
WO0O"818YMaWIOS USIEM BYSOUSQ | 99G/-GE9-G2y | €5086 | WM | Puowpey | INenueAy ypzZL/9 | eyseusq ysrem 8
WO0O"810YMBIOS ® BUBAS OB | 99/G-v25-902 | SLIB6 | VM EMEES 198115 puzy 1128 soep aueng L
WO0O'818YMaS|e ®UOSIEPUY BUUOQ | 99G/-BES-09E | €/286 | VM | UOWeA IN | Aemied 1SeioliH 0Lyl BuUUOQ | UOSIEPUY 9
woo aIeymawos @ AeuIsl] 'sUoQ | £/98-GE9-GZy | 0086 | VM | onAejieg | 198aS Uir 3N OLSHE suog fouwsl] S
WO0O"8I0YMBWIOS ® YNHUD UYOr | SS9-v2S-902 | 60186 | VM omeos 19815 BYOJY SEE uyor YIBID v
WO0O'9I8YMaWOS @ YOIOUBE'SUYD | 88/6-GE9-GZy | S0086 | VM | enaejieg | 19aas yig AN S0921 suyg | yosoueg €
WoO"818YMBUIOS B JeakpooD aulByIeY | bYSE-b2S-90Z | SOLBE | VM oeas INOAV UILL SEEL | Suuaye)y | Jeakpoon z
WO00°'2I0YMOWIOS ® BIIYS™19G0Y | £EVZ-v2S-902 | €0186 | VM OHESS | N eAY UOISUBAT 5229 veqoy aiys L

news suoyd diz | aes Ao ssaippy swensai | sweniseq | uewoisny

109

110

Part 1 Getting Started

SalelD CustomeriD SaleDate SubTotal Tax Total

1 1 12/14/2012 $3,500.00 $290.50 $3,790.50
2 2 12/15/2012 $1,000.00 $83.00 $1,083.00
3 3 12/15/2012 $50.00 $4.15 $54.15
4 4 12/23/2012 $45.00 $3.74 $48.74
5 1 1/5/2013 $250.00 $20.75 $270.75
6 5 1/10/2013 $750.00 $62.25 $812.25
7 6 1/12/2013 $250.00 $20.75 $270.75
8 2 1/15/2013 $3,000.00 $249.00 $3,249.00
9 5 1/25/2013 $350.00 $29.05 $379.05
10 7 2/4/2013 $14,250.00 $1,182.75 $15,432.75
11 8 2/4/2013 $250.00 $20.75 $270.75
12 5 2/7/2013 $50.00 $4.15 $54.15
13 9 2/7/2013 $4,500.00 $373.50 $4,873.50
14 10 2/11/2013 $3,675.00 $305.03 $3,980.03
15 2 2/11/2013 $800.00 $66.40 $866.40

AN Figure 2-47

Sample Data for the QACS

Database SALE Table

N. Show the LastName, FirstName, and Phone of all customers who have had an order

with Total greater than $100.00. Use a join, but do not use JOIN ON syntax. Present
results sorted by LastName in ascending order and then FirstName in descending
order.

Show the LastName, FirstName, and Phone of all customers who have had an order
with Total greater than $100.00. Use a join using JOIN ON syntax. Present results sorted
by LastName in ascending order and then FirstName in descending order.

Show the LastName, FirstName, and Phone of all customers who who have bought
an Item named 'Desk Lamp'. Use a subquery. Present results sorted by LastName in
ascending order and then FirstName in descending order.

Show the LastName, FirstName, and Phone of all customers who have bought an Item
named 'Desk Lamp'. Use a join, but do not use JOIN ON syntax. Present results sorted
by LastName in ascending order and then FirstName in descending order.

Show the LastName, FirstName, and Phone of all customers who have bought an
Item named 'Desk Lamp'. Use a join using JOIN ON syntax. Present results sorted by
LastName in ascending order and then FirstName in descending order.

AN/ Figure 2-48
Sample Data for the QACS
Database SALE_ITEM Table

Chapter 2 Introduction to Structured Query Language

SalelD SaleltemID ItemID ItemPrice
1 1 1 $3,000.00
1 2 2 $500.00
2 1 3 $1,000.00
3 1 4 $50.00
4 1 5 $45.00
5 1 6 $250.00
6 1 i/ $750.00
7 1 8 $250.00
8 1 9 $1,250.00
8 2 10 $1,750.00
9 1 1 $350.00
10 1 19 $5,000.00
10 2 21 $8,500.00
10 3 22 $750.00
1 1 17 $250.00
12 1 24 $50.00
13 1 20 $4,500.00
14 1 12 $3,200.00
14 2 14 $475.00
15 1 23 $800.00

111

S. Show the LastName, FirstName, and Phone of all customers who have bought an Item
named 'Desk Lamp'. Use a combination of a join and a subquery. Present results sorted

by LastName in ascending order and then FirstName in descending order.

T. Show the LastName, FirstName, and Phone of all customers who have bought an Item
named ‘Desk Lamp’. Use a combination of a join and a subquery that is different from
the combination used for question S. Present results sorted by LastName in ascending
order and then FirstName in descending order.

112 Part 1 Getting Started
ItemID ItemDescription CompanyName PurchaseDate ItemCost ItemPrice
1 Antique Desk European Specialties 11/7/2012 $1,800.00 $3,000.00
2 Antique Desk Chair Andrew Lee 11/10/2012 $300.00 $500.00
3 Dining Table Linens Linens and Things 11/14/2012 $600.00 $1,000.00
4 Candles Linens and Things 11/14/2012 $30.00 $50.00
5 Candles Linens and Things 11/14/2012 $27.00 $45.00
6 Desk Lamp Lamps and Lighting 11/14/2012 $150.00 $250.00
7 Dining Table Linens Linens and Things 11/14/2012 $450.00 $750.00
8 Book Shelf Denise Harrion 11/21/2012 $150.00 $250.00
9 Antique Chair New York Brokerage 11/21/2012 $750.00 $1,250.00
10 Antique Chair New York Brokerage 11/21/2012 $1,050.00 $1,750.00
11 Antique Candle Holder | European Specialties 11/28/2012 $210.00 $350.00
12 Antique Desk European Specialties 1/5/2013 $1,920.00 $3,200.00
13 Antique Desk European Specialties 1/5/2013 $2,100.00 $3,500.00
14 Antique Desk Chair Specialty Antiques 1/6/2013 $285.00 $475.00
15 Antique Desk Chair Specialty Antiques 1/6/2013 $339.00 $565.00
16 Desk Lamp General Antiques 1/6/2013 $150.00 $250.00
17 Desk Lamp General Antiques 1/6/2013 $150.00 $250.00
18 Desk Lamp Lamps and Lighting 1/6/2013 $144.00 $240.00
19 Antique Dining Table | Denesha Walsh 1/10/2013 $3,000.00 $5,000.00
20 Antique Sideboard Chris Bancroft 1/11/2013 $2,700.00 $4,500.00
21 Dining Table Chairs Specialty Antiques 1/11/2013 $5,100.00 $8,500.00
22 Dining Table Linens Linens and Things 1/12/2013 $450.00 $750.00
23 Dining Table Linens Linens and Things 1/12/2013 $480.00 $800.00
24 Candles Linens and Things 1/17/2013 $30.00 $50.00
25 Candles Linens and Things 1/17/2013 $36.00 $60.00

AN Figure 2-49

QACS Database ITEM Table

Chapter 2 Introduction to Structured Query Language 113

—_ James Morgan owns and operates Morgan Importing, which purchases antiques and home fur-

Morgan ‘/ \ nishings in Asia, ships those items to a warehouse facility in Los Angeles, and then sells these
Importin g "M" items in the United States. James tracks the Asian purchases and subsequent shipments of these
\ + items to Los Angeles by using a database to keep a list of items purchased, shipments of the pur-

N+~ chased items, and the items in each shipment. His database includes the following tables:

LocalCurrencyAmount, ExchangeRate)

SHIPMENT (ShipmentlD, ShipperName, ShipperInvoiceNumber, DepartureDate,
ArrivalDate, InsuredValue)

SHIPMENT ITEM (ShipmentlD, ShipmentitemlD, ltemlID, Value)

In the database schema above, the primary keys are underlined and the foreign keys are
shown in italics. The database that James has created is named M1, and the three tables in the
MI database schema are shown in Figure 2-50.

The column characteristics for the tables are shown in Figures 2-51, 2-52, and 2-53. The

N Fi 2.
L' Figuee 2189 data for the tables are shown in Figures 2-54, 2-55, and 2-56. The relationship between ITEM

The MI Database

The ITEM > TEM SHIPMENT
table 7 RemiD ¥ shipmentiD
Description ShipperName
The SHIPMENT L e T
tab|e City ArmvaiDate
Date Insuredvalue
LocaiCurrencyamount
The SHIPMENT_ITEM FRvathes SHIPMENT_ITEM
table [¥ ShipmentiD
¥ ShipmentitemiD
ItemiD
\ Value
AN/ Figure 2-51
Column Characteristics for
the MI Database ITEM Table
ITEM
Column Name Type Key Required Remarks
ltemID AutoNumber Primary Key Yes Surrogate Key
Description Text (255) No Yes Long Integer
PurchaseDate Date No Yes
Store Text (50) No Yes
City Text (35) No Yes
Quantity Number No Yes Long Integer
LocalCurrencyAmount Number No Yes Decimal, 18 Auto
ExchangeRate Number No Yes Decimal, 12 Auto

114 Part 1 Getting Started
AN Figure 2-52 SHIPMENT
Column Column Name Type Key Required Remarks
Characteristics
for th
,3; Daetabase ShipmentiD AutoNumber Primary Key | Yes Surrogate Key
SHIPMENT Table
ShipperName Text (35) No Yes
ShipperinvoiceNumber Number No Yes Long Integer
DepartureDate Date No No
ArrivalDate Date No No
InsuredValue Currency No No Two Decimal Places
AN Figure 2-53
Column Characteristics
for the MI Database
SHIPMENT_ITEM Table
SHIPMENT_ITEM
Column Name Type Key Required Remarks
ShipmentID Number Primary Key, | Yes Long Integer
Foreign Key
ShipmentitemID Number Primary Key Yes Long Integer
ItemID Number Foreign Key | Yes Long Integer
Value Currency No Yes Two Decimal Places
AN Figure 2-54
Sample Data for the Ml
Database ITEM Table
ItemID | Description PurchaseDate | Store City Quantity | LocalCurrencyAmount | ExchangeRate
1 QE Dining Set | 07-Apr-13 Eastern | Manila 2 403405 0.01774
Treasures
2 Willow Serving | 15-Jul-13 Jade Singapore 75 102 0.5903
Dishes Antiques
3 Large Bureau | 17-Jul-13 Eastern Singapore 8 2000 0.5903
Sales
4 Brass Lamps | 20-Jul-13 Jade Singapore 40 50 0.5903
Antiques

Chapter 2 Introduction to Structured Query Language 115

ShipmentlD | ShipperName ShipperinvoiceNumber | DepartureDate | ArrivalDate | InsuredValue

1 ABC Trans-Oceanic 2008651 10-Dec-12 15-Mar-13 | $15,000.00
2 ABC Trans-Oceanic 2009012 10-Jan-13 20-Mar-13 $12,000.00
3 Worldwide 49100300 05-May-13 17-Jun-13 | $20,000.00
4 International 399400 02-Jun-13 17-Jul-13 | $17,500.00
5 Worldwide 84899440 10-Jul-13 28-Jul-13 | $25,000.00
6 International 488955 05-Aug-13 11-Sep-13 $18,000.00

L}‘ Figure 2-55

Sample Data for the Ml

Database SHIPMENT Table

AN Figure 2-56
Sample Data for the MI

Database SHIPMENT_ITEM
Table

ShipmentIiD | ShipmentitemIiD | ItemID Value
3 1 1 $15,000.00
4 1 4 $1,200.00
& 2 3 $9,500.00
4 3 2 $4,500.00

and SHIPMENT_ITEM should enforce referential integrity, and although it should cascade up-
dates, it should not cascade deletions. The relationship between SHIPMENT and SHIPMENT _
ITEM should enforce referential integrity and cascade both updates and deletions.

We recommend that you create a Microsoft Access 2013 database named MI-CHO02.accdb
using the database schema, column characteristics, and data shown above and then use this
database to test your solutions to the questions in this section. Alternatively, SQL scripts for
creating the MI-CH02 database in Microsoft SQL Server, Oracle Database, and MySQL are
available on our Web site at www.pearsonhighered.com/kroenke.

Write SQL statements and show the results based on the Ml data for each of the
following:

A.
B.
C.

Show all data in each of the tables.
List the ShipmentID, ShipperName, and ShipperInvoiceNumber of all shipments.

List the ShipmentID, ShipperName, and ShipperInvoiceNumber for all shipments that
have an insured value greater than $10,000.00.

List the ShipmentID, ShipperName, and ShipperInvoiceNumber of all shippers whose

name starts with AB'.

Assume DepartureDate and ArrivalDate are in the format MM/DD/YY. List the
ShipmentID, ShipperName, ShipperInvoiceNumber, and ArrivalDate of all shipments
that departed in December.

Assume DepartureDate and ArrivalDate are in the format MM/DD/YY. List the
ShipmentID, ShipperName, ShipperInvoiceNumber, and ArrivalDate of all shipments
that departed on the tenth day of any month.

116

Part 1

Getting Started

G. Determine the maximum and minimum InsuredValue.

Determine the average InsuredValue.
Count the number of shipments.

Show ItemID, Description, Store, and a calculated column named USCurrencyAmount
that is equal to LocalCurrencyAmount multiplied by the ExchangeRate for all rows of
ITEM.

Group item purchases by City and Store.

Count the number of purchases having each combination of City and Store.

. Show the ShipperName, ShipmentID and DepartureDate of all shipments that have

an item with a value of $1,000.00 or more. Use a subquery. Present results sorted by
ShipperName in ascending order and then DepartureDate in descending order.

. Show the ShipperName, ShipmentID, and DepartureDate of all shipments that have

an item with a value of $1,000.00 or more. Use a join. Present results sorted by
ShipperName in ascending order and then DepartureDate in descending order.

Show the ShipperName, ShipmentID, and DepartureDate of the shipment for
items that were purchased in Singapore. Use a subquery. Present results sorted by
ShipperName in ascending order and then DepartureDate in descending order.

Show the ShipperName, ShipmentID, and DepartureDate of all shipments that have
an item that was purchased in Singapore. Use a join, but do not use JOIN ON syntax.
Present results sorted by ShipperName in ascending order and then DepartureDate in
descending order.

. Show the ShipperName, ShipmentID, and DepartureDate of all shipments that have an

item that was purchased in Singapore. Use a join using JOIN ON syntax. Present results
sorted by ShipperName in ascending order and then DepartureDate in descending
order.

. Show the ShipperName, ShipmentID, the DepartureDate of the shipment, and Value

for items that were purchased in Singapore. Use a combination of a join and a subquery.
Present results sorted by ShipperName in ascending order and then DepartureDate in
descending order.

Show the ShipperName, ShipmentID, the DepartureDate of the shipment, and Value for
items that were purchased in Singapore. Also show the ShipperName, ShipmentID, and
DepartureDate for all other shipments. Present results sorted by Value in ascending
order, then ShipperName in ascending order, and then DepartureDate in descending
order.

