
1 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Software
Evolution

IS301 – Software Engineering

Lecture #28 – 2004-11-05
M. E. Kabay, PhD, CISSP-ISSMP

Professor of Computer Information Systems
School of Business & Management, Norwich University

mailto:mkabay@norwich.edu V: 802.479.7937

mailto:mkabay@norwich.edu

2 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Objectives

To explain why change is inevitable if
software systems are to remain useful

To discuss software maintenance and
maintenance cost factors

To describe the processes involved in
software evolution

To discuss an approach to assessing
evolution strategies for legacy systems

3 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Topics

Program evolution dynamics

Software maintenance

Evolution processes

Legacy system evolution

4 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Software Change (1)

Managing
processes of
software
system change

5 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Software Change (2)

Software change inevitable

New requirements emerge when software used

Business environment changes

Errors must be repaired

New equipment must be accommodated

Performance or reliability may have to be
improved

Key problem for organizations:

Implementing and managing change to legacy
systems

6 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Software Change Strategies

Software maintenance

Response to changed requirements

Fundamental software structure stable

Architectural transformation

Generally from centralized architecture to
distributed architecture

Software re-engineering

No new functionality added

Restructured and reorganized

To facilitate future changes

Strategies may be applied separately or together

7 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Spiral Model Of Evolution

8 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Program Evolution Dynamics

Study of processes of system change

Lehman and Belady

Major empirical study

Proposed ‘laws’ applying to all systems as
they evolved

Sensible observations rather than laws

Applicable to large systems developed by
large organizations

Perhaps less applicable in other cases

9 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Lehman’s Laws

Continuing Change

 Increasing Complexity

Large Program Evolution

Organizational Stability

Conservation of Familiarity

10 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Continuing Change

A program used in a
real-world
environment must
necessarily change or
it will progressively
become less useful in
that environment.

11 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Increasing Complexity

As an evolving program
changes, its structure
tends to become more
complex.

Extra resources must be
devoted to preserving
and simplifying the
structure.

12 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Large Program Evolution

Program evolution is a
self-regulating process.

System attributes such as
size, time between releases
and the number of reported
errors are approximately
invariant for each system
release.

13 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Organizational Stability

Over a program’s lifetime,
its rate of development is
approximately constant
and independent of the
resources devoted to
system development.

14 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Conservation of Familiarity

Over the lifetime of
a system, the
incremental change
in each release is
approximately
constant.

15 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Applicability of
Lehman’s Laws

Not yet been established

Generally applicable to

Large, tailored systems

Developed by large organizations

Not clear how they should be modified for

Shrink-wrapped software products

Systems that incorporate significant
number of COTS components

Small organizations

Medium sized systems

16 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Software Maintenance

Modifying program after it has been put into use

Does not normally involve major changes to
system’s architecture

Changes are implemented by

Modifying existing components and

Adding new components to system

17 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Maintenance Inevitable

System requirements likely to change
while system being developed

Because environment changing

Therefore delivered system won't meet its
requirements (!)

Systems tightly coupled with their environment

When system installed in environment it
changes that environment

Therefore changes system requirements

Systems MUST be maintained if they are to
remain useful in their environment

18 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Tool/Problem Relation

Availability of a

tool changes the

perception of

what is possible

19 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Types of Maintenance

Repair software faults

Adapt software to different operating
environment (e.g., new computer, OS)

Add to or modify system’s functionality

20 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Distribution of Maintenance
Effort

21 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Maintenance Costs

Usually greater than development costs
(2* to 100* depending on application)

Affected by both technical and non-technical
factors

 Increases as software maintained

Maintenance corrupts software structure
thus making further maintenance more
difficult

Ageing software can have high support costs
(e.g. old languages, compilers etc.)

22 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Development/Maintenance
Costs

23 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Maintenance Cost Factors

Team stability

$$ reduced if same staff involved with them
for some time

Contractual responsibility

Developers of system may have no
contractual responsibility for maintenance

So no incentive to design for future change

Staff skills

Maintenance staff often inexperienced and
may have limited domain knowledge

Program age and structure

As programs age, their structure degraded
and they become harder to understand and
change

24 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Maintenance Prediction

25 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Complexity Metrics

Predictions of maintainability can be made by
assessing complexity of system components

Studies have shown that most maintenance
effort spent on relatively small number of
system components

Complexity depends on

Complexity of control structures

Complexity of data structures

Procedure and module size

26 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Process Metrics

Process measurements may be used to assess
maintainability

Number of requests for corrective maintenance

Average time required for impact analysis

Average time taken to implement change
request

Number of outstanding change requests

 If any or all of these increasing, this may indicate
decline in maintainability

27 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Evolution processes

Evolution processes depend on

The type of software being maintained;

The development processes used;

The skills and experience of the people
involved.

Proposals for change are the driver for
system evolution. Change identification and
evolution continue throughout the system
lifetime.

28 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Change Identification and
Evolution

29 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

The System Evolution
Process

30 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Change Implementation

31 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Emergency Repair

32 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

System re-engineering

Re-structuring or re-writing part or all of a
legacy system without changing its
functionality.

Applicable where some but not all sub-
systems of a larger system require frequent
maintenance.

Re-engineering involves adding effort to
make them easier to maintain. The system
may be re-structured and re-documented.

33 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Advantages of Reengineering

Reduced risk

There is a high risk in new software
development. There may be development
problems, staffing problems and
specification problems.

Reduced cost

The cost of re-engineering is often
significantly less than the costs of
developing new software.

34 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Forward and Re-engineering

35 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

The re-engineering process

36 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Reengineering Process
Activities

Source code translation

Convert code to a new language.

Reverse engineering

Analyze the program to understand it;

Program structure improvement

Restructure automatically for
understandability;

Program modularization

Reorganize the program structure;

Data reengineering

Clean-up and restructure system data.

37 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Re-engineering Approaches

Automated program

restructuring

Program and data

restructuring

Automated source

code conversion

Automated test

restructuring with

manual changes

Restructuring plus

architectural

changes

Increased cost

38 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Reengineering Cost Factors

The quality of the software to be
reengineered.

The tool support available for reengineering.

The extent of the data conversion which is
required.

The availability of expert staff for
reengineering.

This can be a problem with old systems
based on technology that is no longer
widely used.

39 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Legacy System Evolution

Organizations that rely on legacy systems
must choose a strategy for evolving these
systems

Scrap the system completely and modify
business processes so that it is no longer
required;

Continue maintaining the system;

Transform the system by re-engineering to
improve its maintainability;

Replace the system with a new system.

The strategy chosen should depend on the
system quality and its business value.

40 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

System Quality and
Business Value

B
u

s
in

e
s

s
 v

a
lu

e

41 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Legacy System Categories

 Low quality, low business value

These systems should be scrapped.

 Low-quality, high-business value

These make an important business contribution but
are expensive to maintain. Should be re-engineered
or replaced if a suitable system is available.

 High-quality, low-business value

Replace with COTS, scrap completely or maintain.

 High-quality, high business value

Continue in operation using normal system
maintenance.

42 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Business Value Assessment

Assessment should take different viewpoints
into account

System end-users;

Business customers;

Line managers;

IT managers;

Senior managers.

 Interview different stakeholders and collate
results.

43 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

System Quality Assessment

Business process assessment

How well does the business process
support the current goals of the business?

Environment assessment

How effective is the system’s environment
and how expensive is it to maintain?

Application assessment

What is the quality of the application
software system?

44 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Business Process
Assessment

Use a viewpoint-oriented approach and seek
answers from system stakeholders

Is there a defined process model and is it
followed?

Do different parts of the organization use
different processes for the same function?

How has the process been adapted?

What are the relationships with other business
processes and are these necessary?

Is the process effectively supported by the
legacy application software?

Example - a travel-office system may now have a
low business value because of the widespread use
of Web-based ordering.

45 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Environment Assessment (1)

Supplier stability

Is the supplier is still in existence?

Is the supplier financially stable and likely
to continue in existence?

If the supplier is no longer in business,
does someone else maintain the systems?

Failure rate

Does the hardware have a high rate of
reported failures?

Does the support software crash and force
system restarts?

46 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Environment Assessment (2)

Age

How old is the hardware and software?

The older the hardware and support
software, the more obsolete it will be.

It may still function correctly but there
could be significant economic and
business benefits to moving to more
modern systems.

Performance

Is the performance of the system
adequate?

Do performance problems have a
significant effect on system users?

47 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Environment Assessment (3)

 Support requirements

What local support is required by the hardware and
software?

 If there are high costs associated with this support,
it may be worth considering system replacement.

 Maintenance costs

What are the costs of hardware maintenance and
support software licences?

Older hardware may have higher maintenance costs
than modern systems.

Support software may have high annual licensing
costs.

48 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Environment Assessment (4)

 Interoperability

Are there problems interfacing the system
to other systems?

Can compilers etc. be used with current
versions of the operating system?

Is hardware emulation required?

49 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Application Assessment (1)

Support requirements

What local support is required by the
hardware and software?

If there are high costs associated with this
support, it may be worth considering
system replacement.

Maintenance costs

What are the costs of hardware
maintenance and support software
licences?

Older hardware may have higher
maintenance costs than modern systems.

Support software may have high annual
licensing costs.

50 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Application Assessment (2)

 Interoperability

Are there problems interfacing the system
to other systems?

Can compilers etc. be used with current
versions of the operating system?

Is hardware emulation required?

Programming language

Are modern compilers available for the
programming language used to develop
the system?

Is the programming language still used for
new system development?

51 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Application Assessment (3)

 Configuration management

Are all versions of all parts of the system managed
by a configuration management system?

Is there an explicit description of the versions of
components that are used in the current system?

 Test data

Do test data for the system exist?

Is there a record of regression tests carried out
when new features have been added to the system?

 Personnel skills

Are there people available who have the skills to
maintain the application?

Are there only a limited number of people who
understand the system?

52 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

System Measurement

You may collect quantitative data to make an
assessment of the quality of the application
system

The number of system change requests;

The number of different user interfaces
used by the system;

The volume of data used by the system.

53 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Key points

Software development and evolution should
be a single iterative process.

Lehman’s Laws describe a number of insights
into system evolution.

Three types of maintenance are bug fixing,
modifying software for a new environment
and implementing new requirements.

For custom systems, maintenance costs
usually exceed development costs.

54 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Key points

The process of evolution is driven by
requests for changes from system
stakeholders.

Software re-engineering is concerned with re-
structuring and re-documenting software to
make it easier to change.

The business value of a legacy system and its
quality should determine the evolution
strategy that is used.

55 Note content copyright © 2004 Ian Sommerville. NU-specific content copyright © 2004 M. E. Kabay. All rights reserved.

Now go and
study

