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7 Sampling and Statistical Inference 

7.1 Populations and Samples 

In several sections of your introduction so far, you have read about parametric statistics and sample statistics. In 
this section we examine these concepts – populations and samples – in more depth. 

When the data in which we are interested represent everything on which we are focusing, we call the data set a 
population. For example, we could discuss how the students in the QM213 Business & Economic Statistics I 
course in the School of Business and Management in the Fall semester of 2029 at Norwich University do in 
their first quiz and in their final exam. These data could constitute the entire population. If we consider the 
data the population, then the mean, standard deviation, median, mode and any other statistic we compute 
using these data are all parametric values. They are not estimates of anything: they are exact representations of the 
population attributes for that particular, specific group. The group doesn’t represent anything; it isn’t intended 
to be anything other than itself. 

Similarly, if we summarize the sports statistics for a particular team for a specific period, the data are not a 
sample of anything: they are the entire population of data for that period. “The Norwich Paint-Drying Team 
scored an average of 32 points per round in the North American Paint-Drying Tourney in 2029” isn’t a 
description of a sample: it’s (presumably) the absolute, incontrovertible truth; it’s a parametric statistic. 

But what if we consider the QM213 data as part of a larger study? What if we are actually interested in 
studying the relationship between the score on the first quiz in QM213 and the score on the final exam in 
QM213 classes in general? The data we just collected could actually be going into a collection spanning the 
years from, say 2010 through 2029; in that case, the group of interest is not only the particular class and the 
particular quiz results: the group of interest is all possible groups of QM213 students and their first quiz and final 
exam results. In this case, the data for the Fall 2029 QM213 class’s first quiz and final exam results are both 
samples from the larger, theoretical population of all possible such values. 

As stated above, does the population include students in QM213 courses before 2010 and after 2029? Does 
the population for which the Fall 2029 results have been collected include Spring QM213 classes? Does the 
population include other statistics classes in the School of Business and Management such as QM 370 
Quantitative Methods in Marketing & Finance? Does the population include results from the first quiz and final 
exams for other statistics courses at Norwich University such as MA232 Elementary Statistics? Does it include 
results for statistics courses at other universities? For that matter, is the population we are studying all possible 
courses that have a first quiz and a final exam? 

The critical concept here is that there is nothing absolute about a set of numbers that tells us instantly whether 
they are a sample or a population; there’s no convenient little flag sticking up to indicate that status. More 
seriously, the decision on whether to view a group of data as a sample or a population is not based on the 
data: the decision is based on the way the data are collected  and how they are being used by the analysts. 
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7.2 Sample Statistics and Parameters 

One of the most important concepts in statistics is the idea of representative samples. A sample is 
representative when the information from the sample can be used to guess at the values of the population 
from which it was drawn. We say that we can infer the parametric value of a statistic from the value of the 
sample statistic. 

A researcher could claim that the Fall 2010 Norwich University QM213 quiz and final scores were samples 
from the global population of all statistics courses given anywhere at any time. There would be a number of 
assumptions in such a claim. Think about some of the claims the researcher could be making by asserting that 
the sample in question was from the population of all students taking any statistics course (this is only a 
partial list): 

• The QM213 class in Fall 2029 is similar to all other QM213 classes; 

• The QM213 course is similar to all other statistics courses the School of Business and Management; 

• The statistics courses in the School of Business and Management’ to all other statistics courses at 
Norwich University; 

• Statistics courses at Norwich University are similar to all other statistics courses on planet Earth; 

• Statistics courses on planet Earth are similar to all other statistics courses in the known universe. 

None of these assumptions is obligatory; what the researcher decides to claim about the nature of the 
population from which the Fall 2029 QM213 first quiz and final exam results determines what assumptions 
are being made. 

Depending on what the population is assumed to be, the researcher will be able to try to infer attributes of 
that population based on the particular sample; whether those inferences will be accepted by other 
statisticians is a question of how carefully the researcher thinks about the sampling process. 

In ordinary life, we are faced with data that are represented to be from populations defined according to the 
preferences of the people reporting the statistics. For example, a newspaper article may report that 23% of 
the college students in Mare Imbrium have been unable to buy a hovercraft in the first year after their 
graduation. The writer goes on to discuss the general problems of college graduates system wide, including 
those on Earth, on the Lunar Colonies, and on the Jovian Satellite Colonies. But how do we know that the 
Mare Imbrium students are in fact from the population defined for the entire Solar System? Is there any 
evidence presented to suggest that the Mare Imbrium students are in fact a representative sample? What 
about the fact that the proportion of college graduates who buy a hovercraft on Mars has reached 91%? Or 
that Earth graduates have a paltry 3% ownership of these much-desired vehicles in their first year after 
graduation? 

Whenever you read statistics, especially in the popular press or in media prepared by people with a strong 
interest in convincing you of a particular point of view, you should investigate in depth just how the data 
were collected and on what basis they can be considered representative of the population for which they are 
claimed to be samples. 

 

  

INSTANT TEST P 2 

Examine published reports that include statistical information. Notice carefully where 

the authors are discussing populations and where they are discussing samples. Think 

about what you would have to do to extend or narrow the definitions to change the 

populations to larger or smaller groups. Explain your reasoning as if to a fellow student. 
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7.3 Greek Letters for Parametric Statistics 

You will also have noticed in previous sections that parametric statistics are customarily symbolized using 
lowercase Greek letters. For reference, Figure 7-1 shows the Greek alphabet with names and Roman 

equivalents. Notice that sigma, the equivalent of our s, has two lowercase versions, σ and . The latter is rarely 
used in mathematics; it is the form that is used in Greek writing only for a sigma that is at the end of a word. 

  

Figure 7-1. Greek letters for parametric statistics. 
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7.4 Random Sampling from a Population 

What makes a sample representative of a particular population? 

Should we inspect the data and pick the ones we think look like what we believe the population to be? Bad 
idea, don’t you think? How would we ever separate the effects of our own preconceptions from the reality of 
the situation? With a pick-and-choose approach to sampling, we 
could claim anything we wanted to and pretend to provide a 
statistical justification for our claims. 

For example, suppose a (shall we say) naïve researcher, Arthur 
Schlemiel,74 has a preconceived notion that the score on the first 
quiz in the QM213 class for Fall 2029 was strongly related to the 
score on the final exam in that class. Figure 7-2 shows the 
original data.  

Schlemiel could cheerfully (and wrongly) select only the students 
whose Quiz #1 scores and Final Exam scores were similar; for 
example, either both low, both middling, or both high. Schlemiel 
might compute the ratio of the Final Exam score to the  Quiz 
#1 score (F/Q) and pick only the students with a F/Q ratio of, 
say, 85% to 115%. The students whose data are in bold italics 
and are shown in the central box in Figure 7-3. 

 

 

 

 

 

 

 

 

Schlemiel would leave out students P, N, H, L, C, 
M, G, F, and D because their results don’t match 
his preconceptions. We call this a biased sample. 
Simply at a gut level, would you trust anything 
Schlemiel then has to say about the relationship 
between Quiz #1 results and Final Exam results in 
QM213 – or in any other population he chose to 
define for these data? 

  

 

74 A schlemiel is a Yiddish term for a dolt. 

Figure 7-2. Original data on quiz & final 

scores. 

Figure 7-3. Biased sampling using F/Q ratio. 
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Let’s pursue this example just a bit farther. You will learn later that an analysis of variance (ANOVA) with 
regression could be used to try to predict the Final Exam score based on the collected data about the Quiz #1 
results. Without going into detail, the calculations of a regression equation and the ANOVA for the original 
data are shown in brief in the box in the chart in Figure 7-4. The results don’t support the view that there is 
much of a relation between the first quiz result and the final exam result. The regression equation, such as it 
is, has a slope (b) of about 23%, implying that the Final Exam score rises by 23% of the Quiz 1 score. But 
another way of looking at this weak relationship is to examine the coefficient of determination, r2 (not shown 
in the figure) which reflects how much of the variability in one variable can be explained by knowing the 
other. In this case, r2 turns out to be about 8%; i.e., only 8% of the variability of the Final Exam score can be 
explained by the Quiz 1 score; all the rest of the scatter has other, unknown sources. 

  

Figure 7-4. ANOVA with regression for unbiased sample. 

INSTANT TEST P 7-5 

For the diagram above, explain the meaning of the dashed line with the red squares 

versus the meaning of the blue solid line with the blue diamonds. 

Explain why it’s OK to use a line graph instead of histograms in the diagram. 

Most people would not interchange the axes in this graph; they would not put “Final 

Exam Results” on the abscissa and “Quiz #1 Results” on the ordinate. Why not? 
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In contrast, the faulty (fraudulent) analysis using Schlemiel’s biased sample, shown in Figure 7-5, produces a 
misleading result exactly in line with Schlemiel’s preconceptions: what a surprise! This time the (fake) 
regression equation has a slope of 78%; the bogus coefficient of determination is a much higher 83%. 

So unless someone examines his raw data and catches his deception, Schlemiel can publish his rubbish and 

distort the literature about the relationship between initial quizzes and final scores. The practical effects, were 
these lies to become popularly known, might be to discourage students who do poorly in their first quiz in 
QM213 (the horror!). In fact, the unbiased data do not support such a pessimistic view. 

As you can see, defining representative, unbiased samples is critical to honest use of data. The subject of 
publication bias, which is an observed tendency for editors of scientific journals to discourage publication of 
negative or neutral results, has serious consequences for the ability of researchers to aggregate results from 
independent studies using the techniques of meta-analysis which you will study later in the course. 

  

Figure 7-5. Schlemiel's analysis based on biased sample. 
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7.5 Selecting Random Values for an Unbiased Sample 

The solution to getting a representative, unbiased sample is random sampling. In the simplest terms, a random 
sampling gives every member of a defined population an equal chance of being included in the sample being 
created. In intuitive terms, there are no special rules for selecting the members of the sample – every member 
of the population might be picked for study. 

Looking at the converse, we can say that the population corresponding to a sample is every element which 
could have been picked according to the definition of the desired population. 

Figuring out what the population is for a given sample is not necessarily easy. As a simple example, suppose 
we want to study the structural resistance to earthquakes of reinforced concrete used in all buildings built in 
the last decade that use concrete around the world. We take random samples and everything’s OK, right? 
Well no, not necessarily. For one thing, unless we think of it, the sample won’t include concrete from 
buildings that have collapsed in previous earthquakes! So although the population seems at first to be “all 
buildings on the planet built in the last decade that use reinforced concrete” it’s more correctly described as 
“all buildings on the planet built in the last decade that use reinforced concrete but have not collapsed yet.” 
Don’t you think that the sample might be considered biased? After all, the measurements may exclude the 
buildings that were built in the last decade using shoddy materials such as concrete with much too much sand 
and too little cement or “reinforced” concrete without metal reinforcement rods.75 The information would 
give a biased view of how strong the concrete actually has been in the last decade. 

The easiest way of understanding random sampling is to see it done. Figure 7-6 shows the beginning and end 
of a long list of 20,000 observations gathered about a total of 1,000 stock brokers, their consumption of 
alcohol in the hour before a trade (Y/N) and the 
occurrence of one or more errors in the 
particular trade (Y/N). How would one select 
a random sample of 1,000 observations from 
this list? 

One approach (not the only one) is to assign 
a random number to each observation; in 
EXCEL, that’s easy: the function =RAND() 
generates a number between 0 and 1 
(inclusive) in a uniform distribution. Note 
that this function takes no argument – the 
parentheses have nothing between them. 

Another EXCEL function is the 
=RANDBETWEEN(bottom, top) function 
which generates a uniform distribution of 
numbers between the limits (inclusive). 

The key to these applications for randomizing 
data is that the generated numbers are in 
uniform distributions, so any number can 
appear anywhere in the list with equal 
probability. 

  

 

75 (Associated Press 2011) 

Figure 7-6. Start and end of list of 20,000 observations about 
1,000 data brokers, their alcohol consumption, and their 

errors. 
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We then sort the entire list by the random numbers and pick the first elements in sorted list as our random 
sample of the desired size. Figure 7-7 shows the results of this process. Note that the middle extract shows 
the data around the desired limit of 1,000 entries. We have but to select the first 1,000 entries in the sorted list 
to have a random sample from the entire 20,000 of the original data. 

Looking at this procedure step by step, 

• We start by assigning a random number to each of the observations using the =RAND() function in 
EXCEL.  

• Once we’ve created the list of 20,000 random numbers, we fix them (stop them from changing) by 
copying the entire list and pasting it as values into the first cell of the list, freezing the numbers as 
values instead of functions.. 

• Finally, we sort the list using the random numbers, as shown in Figure 7-7.  

• We select the first 1,000 rows and that’s it: a random sample of 1,000 records from the original 
20,000.  

• There is no human judgement (and potential bias) is involved in the choice. This method is easy to 
apply to any data set and always works. 

  

Figure 7-7.  Original data with random numbers assigned and used to sort the data. 

INSTANT TEST P 7-8 

Create a list of 20 random values from 5,000 to 10,000 using 

=INT(NORM.INV(RAND(),5000,10000)). Copy the list and Paste Special into another 

column using the Values option to freeze the data. Now apply random numbers using 

=RAND() and then copy/paste-special next to your 100 values. Sort the two columns by 

the RAND() values and practice selecting random samples of size 20 from the list. 
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7.6 More about Probability and Randomness 

You’ve heard about and perhaps even studied probability in other courses; in this course, we’ve already 
introduced some basic ideas about probability in §5.3. For now, it suffices to establish probability as a 
measure of what we expect in the long run: what happens on average when we look at repeated actions in a 
defined situation. 

In §7.4 on random sampling, we used the =RAND() function of EXCEL. EXCEL’s HELP function describes 
RAND() as follows: “Returns an evenly distributed random real number greater than or equal to 0 and less 
than 1.” The phrase evenly distributed refers to what mathematicians and statisticians refer to as the uniform 
probability distribution (§5.4). For the RAND() function, we can assert that the frequency of occurrence of 
numbers 0, 0.1, 0.2… 0.8, and 0.9 are all equal (to 10% of the observations) on average over the long run. But 
we can also assert that the occurrence of numbers 0, 0.01, 0.02, 0.03… 0.96, 0.97, 0.98 and 0.99 are also equal 
(to 1% of the observations) on average over the long run. The generated numbers are random precisely 
because there is equal frequency of all the numbers regardless of precision (within the limits of calculation of 
EXCEL). 

Because the numbers are generated by mathematical processes that actually generate exactly the same 
sequence of numbers if they start from any given starting point, we call the =RAND() function a pseudo-random 
number generator. In other words, the output looks random even though the sequence is theoretically 
repeatable. 

But wouldn’t a generator that produced the sequence 0.1, 0.2, 0.3, 0.4… and so on in perpetuity, in the same 
order, produce equal frequencies of numbers of whatever precision we chose? Yes, but they wouldn’t be 
considered random. Randomness applies also to the sequence of the data. There must be no predictability of 
which number follows any given number in a random sequence. So the frequency of, say, the digit 1 followed 
by the digit 2 or digit 1 followed by digit 3 must be equal, and so on. 

Another function that creates pseudo-random numbers in EXCEL is =RANDBETWEEN(bottom,top). For 
example, =RANDBETWEEN(0,9) might produce the sequence 5 1 0 8 1 5 2 9 7 3 in one usage and 1 8 5 4 

6 3 2 9 0 7 in the next. 

Later we will study methods of applying statistical inference to this kind of analysis: we will be using 
Goodness-of-fit tests to evaluate the likelihood that a set of frequency observations deviate from expectation 
by random sampling alone. 

 

  

  

INSTANT TEST P 7-9 

Use Excel to create a list of 10,000 pseudo-random whole numbers between 0 and 9. 

Generate a frequency distribution showing the frequency of each digit in the list. Then do 

it again and compare the results. Are they what you expected? 

Here are the results of such an exercise carried out by the author: 

 

900

920

940

960

980

1000

1020

1040

1060

0 1 2 3 4 5 6 7 8 9

Fr
e

q
u

e
n

cy

Digit

Frequency Distribution of Two Trials
of RANDBETWEEN(0,9)

Series1

Series2



Statistics in Business, Finance, Management & Information Technology 

Copyright © 2021 M. E. Kabay. All rights reserved.           < statistics_text.docx > Page 7-10 

7.7 Random Number Generators 

Some mathematical functions have been written that appear to create random number sequences. A simple 

one is the series of digits in the decimal portion of the number ; another one is a simple procedure involving 
taking the fractional part of a starting number, using it as the exponent of a calculation, and taking the 
fractional part of the result as the next “random” number in the series – and then starting over using this new 
“random” number as the exponent for the next step. All these methods are called iterative pseudo-random number 
generators because they produce sequences that superficially look random but which in fact are perfectly 
repeatable and predictable if you know the rule (the algorithm) and the starting point (the seed value). 

Another problem with iterative pseudo-random number generators is the precision of the calculations: 
eventually, it is possible for a generated number to be created that has already occurred in the sequence. The 
moment that happens, the sequence enters a loop. For example, if we considered the reduction to absurdity 
of having an iterative pseudo-random number generator that truncated its calculations at a single decimal 
digit, then the only numbers it could generate would be 0, .1, .2, .3… and .9. Suppose the sequence it 
generates were .4, .2, .5, .6 and then .4 again: the system would enter the endless loop of .4, .2, .5, .6, .4, .2, .5, 
.6, .4, .2, .5, .6 and so on. Not very random, eh? 

The point of raising these issues here is not to make you experts on random number generators: it’s to make 
you think about the concept of randomness and the fundamentals of probability. For now, it’s enough to 
have you thinking about probability as the expectation of observations in a random process; that is, as average 
frequencies of occurrence for processes that have no obvious pattern. 

7.8 Probabilities in Tossing Coins 

A classic example used in introducing probabilities is the tossing of coins. A coin is tossed and lands with 
either one side (heads) or the other (tails) facing up. We deliberately ignore the rare cases where the coin lands 
on its edge and stays that way. We say that the probability of heads is ½ and the probability of tails is ½. 

In general, the sum of the probabilities of all possible results in a defined system is always 1. The probability 
of impossible events is 0. So the probability of heads and the probability of tails in a single coin-toss is 1. The 
probability of 2 heads plus the probability of 1 head and 1 tail plus the probability of 2 tails in tossing a coin 
twice (or tossing two coins at the same time) is 1. We could write this latter assertion as 

P{H,H} + P{H,T} + P{T,H} + P{T,T} = 1 

7.9 Probabilities in Statistical Inference 

In the ANOVA tables you have seen in previous sections and on the regression charts there were figures 
labeled p. These refer to the probability that there is no relationship among the data analyzed (that idea is 
called the null hypothesis); it is a measure of how likely we are to see results as deviant from the most likely 
expected result or more deviant by pure luck – by chance alone. As you will see in the discussion of 
hypothesis testing, looking at how likely our observed results are as a function of chance variations is a core 
idea for modern statistics. 

  

INSTANT TEST P 7-10 

Explain to yourself or to a buddy why the probability of getting two heads on top if you 

toss two coins is ¼. Then explain why the probability of getting one head and one tail on 

top is ½ instead of ¼. 
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7.10 The Central Limit Theorem in Practice 

What happens when we sample from a population? 

Does the sample reflect the characteristics of the population? Yes, but not in the sense of matching it exactly. 
Suppose we have a population of 4,821 widgets produced from assembly line #3 at the Urgonian 
Corporation plant in Olympus Mons on June 14, 2219. The parametric mean length of the widgets is 
determined to be exactly 342 mm by measuring every single widget; the parametric standard deviation of the 
length is exactly 0.716 mm. 

But now we take a sample of 100 widgets from the batch of 4,821 and discover that the sample mean of the 
lengths is 344 mm and the standard deviation is 0.922 mm. Then we take another sample of 100 widgets and 
– horrors – it doesn’t match the population either: the mean length is 341 mm and the standard deviation is 
0.855 mm. 

There’s nothing wrong here. We are seeing a demonstration of sampling variability and of the Central Limit 
Theorem. The interesting and important aspect of sampling is that, according to the Central Limit Theorem, 
the more samples we take, the closer the overall average of the sample statistics approaches the parametric 
value. 

As we accumulate data from dozens of samples, we can build a frequency distribution showing how often 
different means occur in the samples; Figure 7-8 shows what such a graph might look like. 

 

As the number of samples grows, what we find is that  

• The distribution curve becomes more and more symmetrical;  

• The curve gets smoother-looking; 

• The mean of the distribution (Y̅) approaches the parametric mean (μ) more and more closely; 

• The variance (and therefore standard deviation) of the distribution gets smaller and the curve gets 
tighter around the mean. 

 

 

Figure 7-8. Means from dozens of samples. 
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Figure 7-9 shows the results of these tendencies as the number of samples grows into the hundreds. The 
image is inserted full width on the page because careful examination will reveal that the curve is actually a step 
function corresponding to the hundreds of samples. If there were thousands of samples, the curve would 
look smooth at this scale and would be even narrower around the mean. 

The effect of the Central Limit Theorem is stronger as the size of the individual samples rises; samples of size 
100 show a faster approach to the kind of distribution shown in than samples of size 10. 

The distribution shown in Figure 7-9 is a Normal distribution. The Central Limit Theorem can be stated in 
intuitive terms as follows: 

As sample size increases, the means of random samples drawn from a population of any underlying 
frequency distribution will approach a Normal distribution with its mean corresponding to the parametric 
mean of the source distribution. 

The Central Limit Theorem is enormously important in applied statistics. It means that even if an underlying 
phenomenon doesn’t show the attributes of the Normal distribution, the means of samples will be normally 
distributed. Since so much of modern statistics assumes a Normal distribution for the underlying variability of 
the phenomena being analyzed, the Central Limit Theorem means that we can circumvent non-normality by 
working with samples of observations – groups of data – instead of with individual observations. 

  

Figure 7-9. Sampling distribution with hundreds of samples. 
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7.11 The Expected Value 

The Central Limit Theorem also brings to light another concept of great importance: the expected value of a 
statistic. The expected value is the average of a statistic computed over an infinite number of samples.  

For example, the expected value of the sample mean is the parametric mean, . We say that the observed sample 
mean is a point estimator  of the parametric mean – a single value that indicates what the parameter may be. 

Statisticians have also shown that the expected value of the variance of the sample means (2
Y̅) is the ratio of 

the parametric variance (2) to the sample size (n) and thus the expected standard deviation of the sample 

means (Y̅) is expected to be the parametric standard deviation (σ) divided by the square root of the sample 
size(√n): 

The standard deviation of the mean is called the standard error of the mean. In general, the standard deviation of 
any statistic is known as the standard error of that statistic. 

Another interesting application of the Central Limit Theorem is that, in the absence of any further 
information, whatever we encounter is most likely to be average. So for example, suppose we are working on a 
very important project such as writing a statistics textbook and the phone rings; the caller-ID shows an 
unknown caller. In the absence of further information, the call is most likely to be of average importance.76. 

Therefore, one can reasonably defer answering the call and allow it to go to voice-mail for later processing. 

Similarly, if one’s activity is less than average in importance (for instance, watching the Olympic Paint Drying 
Championships on holovision), then one can reasonably answer an unknown caller.  

Statistics in action! 

7.12 More About the Normal Distribution 

In this text, the Normal distribution has a capital N for Normal to be sure that no one thinks that there is 
anything abnormal about non- Normal distributions! The Normal distribution plays an important role in 
statistics because many ways of describing data and their relationships depend on a Normal error distribution. 

For example, in the linear regression that you will study later, the error term  in the equation 

Yij = a + bXi + ij 
represents a Normally-distributed error with a mean of zero and a variance defined by what is called the 
Residual MS (residual mean square) in the ANOVA table. In other words, the linear model defines a best-fit line 
for Y, the expected or predicted dependent variable, as a function of the Y-intercept (a, the value of Y when 
X, the independent variable, is zero) plus the product of the slope b times the value of X, plus the random 

(unexplained) error .77 

Most of the descriptive statistics and statistical tests we use routinely are called parametric statistics because they 
assume a Normal distribution for the error term or unexplained variance. ANOVA, ANOVA with regression, 
t-tests, product-moment correlation coefficients (all to be studied in detail later in this course) uniformly 
assume a Normal error distribution. There are other assumptions too, which we will also discuss later; one 
important concept is that the mean and the variance of a statistic are supposed to be independent. That is, for 

 

76 …and average duration and average volume and average origin and average annoyance-value and average…. 
77 As explained in the Preface, most textbooks never make forward references. However, this textbook often makes such references so that when 
students come to study the details of a technique, they will have encountered it – and some modest amount of information about how it is used – long 
before they have to learn the details. 
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parametric statistical analysis like t-tests and ANOVA, we assume that small observed values have the same 
variability as large observed values for the same variable. 

A counter-example is the relation between, say, size and weight. No one would expect the variance of the 
weights of tiny model sailboats weighing a kilogram or so to be the same as the variance of the weights of 
battleships weighing tens of thousands of tons. 

When these assumptions are not justified, we have to use non-parametric statistics. Examples include using the 
median and the mode instead of the mean and the range and other non-parametric measures of variability 
instead of the variance or standard deviation. Non-parametric tests can include comparisons of ranks instead 
of measured variables. Examples of such tests include 

• Kruskal-Wallis Test for comparisons of central tendency of ranked data 

• Friedman’s Method for Randomized Blocks for comparisons of data that don’t fit the Normal curve 

• Mann-Whitney U-Test for comparing percentages 

• Kolmogorov-Smirnov Two-Sample Test for comparing frequency distributions 

• Wilcoxon’sSigned Ranks Test for Two Groups of Paired Data 

• Spearman’s Coefficient of Rank Correlation.78 

We use the Normal distribution so much that some attributes become familiar simply by force of repetition.79  

Figure 7-10 shows some of the most often used characteristics of the Normal distribution: the areas under 
the curve as a function of distance from the mean (μ) measured in standard deviations (σ).  

 

  

 

78 The names of these tests are included in case you desperately need to analyze rank data or other non-Normal data; you can look up how to perform 
the tests in your statistical package or in standard textbooks. Eventually, this text will expand to include such methods for upper-year courses. 
79 Don’t memorize this stuff – just learn it by using it! 

Figure 7-10. Characteristics of the Normal distribution. 



Statistics in Business, Finance, Management & Information Technology 

Copyright © 2021 M. E. Kabay. All rights reserved.           < statistics_text.docx > Page 7-15 

In Figure 7-10, the letters and numbers indicate the following relationships: 

• The probability that an observation picked at random from a Normally-distributed variable with 
defined mean μ and standard deviation σ will be smaller than three standard deviations (often spoken 
of as less than three sigmas) away from the mean is about 2.13%. This area corresponds to the section 
marked A in the figure. We can write this statement conventionally as 

P{Y  μ-3σ}  2.13% 
• In other words, the probability of enountering a normal variate that is at or less than 3 sigmas below 

the parametric mean is 2.13% or roughly 1 in 47 tries. 

• Because the Normal distribution is perfectly symmetric, area F is identical to area A; that is,  

P{Y  μ+3σ}  2.13% 

• Section B in the figure represents the 13.6% probability that an observation picked at random from a 
Normally distributed variable will lie between 1 and 2 sigmas below the mean. That is, 

P{ μ-2σ  Y  μ-σ}  13.6% 
• Section E corresponds to section B on the other side of the mean, so we can also write 

P{ μ+σ  Y  μ+2σ}  13.6% 
• Areas C and D correspond to the chance of picking a variate at random which lies within one sigma 

of the mean. Together, C and D add up to 68.2% of the total area under the curve (shown on the 
arrows below the abscissa), implying that more than 2/3 of all values picked at random from a 
Normally distributed population will lie between μ-σ and μ+σ. 

P{ μ-σ  Y  μ+σ} > 67% 
• Similarly, the figure illustrates the rule of thumb that about 95% (95.46%) of randomly-chosen 

members of a Normally-distributed population will lie between μ-2σ and μ+2σ (that is, within two 
sigmas of the mean). 

P{ μ-2σ  Y  μ+2σ} > 95% 
• More than 99% (99.72%) of the population lies between μ-3σ and μ+3σ (within three sigmas of the 

mean). 

P{ μ-2σ  Y  μ+2σ} > 99% 
In ordinary life, we can make use of these approximate values when evaluating statements about the 
Normality or non-Normality of specific observations if we know something about the underlying population 
distribution and have some confidence that the error distribution is Normally distributed. 

For example,  

• Imagine that we know that the average height of Lunar Colony men of 19 years of age in a study is 
172.1 cm with standard deviation of 2.8 cm.  

• We can assert from these data that about 2/3 of the 19-year- old males in the Lunar Colony have a 
height between 172.1 – 2.8 cm and 172.1 + 2.8 cm.  

• That’s about 66% of the 19-year-old boys between 169.3 cm and 174.9 cm.  

• For you non-metric folks, that’s about 6’ 3.6” and 6’ 6.1” with a mean of 6’ 4”.  

• Similarly, about 99% would be within three sigmas, which would be 163.7 cm and 180.5 cm (6’ 1.1” 
and 6’ 8.6”).  
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• So if someone said of a young man, “Wow, he’s really exceptionally short” because he was only 6’ 2” 
high, we could identify the statement as inaccurate – unless the speaker’s definition of 
“exceptionally” were unusually liberal and included men within the range of 99% of the Lunar 
Colony population of that age. 

7.13 Statistical Inference: Interval Estimation 

Knowing that random samples vary according to particular patterns – for instance, the means of samples 
approach a Normal distribution – means that we can estimate the parametric value based on a sample value.  

For example, if we sample randomly from the Lunar Colony boys of 19 earth years and measure the heights 
of 25 of them, the mean of that sample should tell us something about the mean of the population. Using the 
Central Limit Theorem, we assert that our best estimate of the parametric mean, in the absence of any other 
information, is the sample mean.  

However, common sense tells us that the sample mean of any one sample may differ from the parametric 
mean; intuitively, it doesn’t seem reasonable to expect that a random sample would magically be exactly 
centered on the population mean. Therefore, we compute an interval estimate for the parametric mean using 
our knowledge of the sample mean and of the variability and pattern of distribution of such means. 

An interval estimate for any statistic is a range with lower and upper confidence limits. Typical (1 - ) confidence 

limits for any interval estimate of a parametric value are called the (1- ) confidence limits. For example, we 
often refer to the 95% confidence limits of a statistic, where α = 0.05. Another common choice is the 99% 
confidence limits of a statistic, where α = 0.01. 

These intervals are interpreted as follows: 

• The probability of being correct  in asserting that the (1 - ) confidence limits include the value of the 

parametric statistic is (1 - ). 

• The probability of being wrong  in asserting that the (1 - ) confidence limits include the value of the 

parametric statistic is . 

Here are some examples of interval estimates for a variety of made-up statistics and different ways of 
interpreting them: 

• The sample mean cost of a trans-Jovian flight in 2219 is 1,452 credits; the 95% confidence limits are 
1167 and 1736 credits. There is a 95% chance of being correct in guessing that the mean cost lies 
between 1167 and 1736 credits. There is therefore a 5% chance of being wrong in that assertion. 

• A sample of Martian fornselling beans has a mean growth potential of 182% per month; the 90% 
confidence limits are 140% to 224%. There is only a 10% chance of being wrong in claiming that the 
growth potential is between 140% and 224% per month. 

• A study of Norwich University students’ usage of forsnelling chips consumed per month in 2219 
showed an average of 3.8 kg per student with 80% confidence limits of 2.3 to 5.3 kg. We would be 
right 80% of the time that we repeat this kind of sampling and computation of the confidence limits 
for the consumption figures. We’d be wrong in 20% of the estimates based on samples of that size. 

• The Gorgonian factor calculated for a sample of 3,491 Sutellian customers indicated an average time 
to immobility upon exposure to the Gorgonian advertisements of 2 hours 12 minutes with 99% 
confidence limits of 1 hour 54 minutes through 2 hours 36 minutes. Our chance of being wrong in 
using this procedure to guess at the correct time to immobility is only 1 time out of a hundred. That 
is, if we were to repeatedly take random samples of size 3,491 Sutellians exposed to the same ads, in 
99 out of a hundred experiments, the computed interval estimates would correctly include the 
parametric mean time to immobility. 

• The mean variance for the sales resulting from exposure to a modified mind-control regimen 
projected through the holographic broadcasting networks was 3,622 with 95% confidence limits of 
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1,865 and 5,957. Using this confidence-interval calculation procedure, we have a 95% probability of 
really including the true parametric sales figure in our computed interval. 

Students may have noticed that in no case above were the confidence intervals interpreted as follows: “The 

probability that the parametric statistic is between the lower and upper (1 - ) confidence limits is (1 - ).” All of the 
interpretations were in terms of the chance of being right (or wrong) in asserting that the limits include the 
parametric value, not the probability that the parameter is between the limits. The parameter is fixed for a 
population; it is the estimates that vary around it. Sokal and Rohlf explained this subtle point as follows in 
their classic textbook: 

“We must guard against a common mistake in expressing the meaning of the confidence 
limits of a statistic. When we have set lower and upper limits … to a statistic, we imply that 
the probability of this interval covering the mean is 0.95, or, expressed in another way, that 
on the average 95 out of 100 confidence intervals similarly obtained would cover the mean. 
We cannot state that there is a probability of 0.95 that the true mean is contained within any 
particular observed confidence limits, although this may seem to be saying the same thing. 
The latter statement is incorrect because the true mean is a parameter; hence it is a fixed 
value and it is therefore either inside the interval or outside it. 

It cannot be inside a particular interval 95% of the time. It is important, therefore, to learn 
the correct statement and meaning of confidence limits.”80 

Notice that most confidence limits are symmetrical, but that the mind-control variance was not; there is no 
guarantee that confidence limits will be symmetrical. The exact calculations for the upper and lower limits 
depend on the nature of the variation of the sample statistics. For example, most statistics are normally 
distributed, but percentages in the low (less than 10%) and high (greater than 90%) ranges are typically not 
normally distributed because there is greater uncertainty (and therefore variability) about the extremes than 
about the central portion of the distribution. We will learn more about how to handle such non-Normal 
measurement scales in the introduction to data transforms later in the text. 

7.14 Population Mean Estimated Using Parametric Standard Deviation 

One of the most common calculations in statistics is the estimation of the confidence limits for a mean. The 
exact calculations depend on whether we know the parametric standard deviation or not. 

When we know the population standard deviation (for example, if the population has long been studied and 
the variance of the statistic in question is established from many repeated measurements and no longer 
considered to be an estimate) then we can use it directly in the calculation of the confidence limits. 

In our introduction to the Normal distribution, we learned that for a Normally distributed variable with mean 
μ and standard deviation σ, 95% of the values lie between -1.96σ  and +1.96σ from the mean, μ. That is,  

 

 

Recalling that for samples of size n, sample means Y̅ are normally distributed around the parametric mean 
with standard error of the mean 

σ  = σ /n     
we can thus write the calculation for the 95% confidence limits to the mean as 

    P{Y - (1.96σ/n)  μ     + (1.96σn)} = 0.95 
Or more generally, where z is the critical z-score corresponding to the probability  to the left of its value, 
then correspondance  

 

80 (Sokal and Rohlf, Biometry: The Principles and Practice of Statistics in Biological Research 1981) p 144. 
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P{  - zs    μ     + zs } = 1 -  
The composite image in Figure 7-11shows the two EXCEL 2010 functions that perform this calculation 
automatically: 

Unfortunately, the HELP text in EXCEL 2010 for these functions has a mistake, as highlighted by the red 

underline in the composite image below (Figure 7-12). 

This function computes half of the confidence interval, not the confidence interval or the confidence limits. 

The formula shown at the lower left of Figure 7-12 defines the upper and lower confidence limits, not the 
confidence interval. The ± symbol implicitly defines (using the -) the lower confidence limit (sometimes denoted 
L1) and (using the +) the upper confidence limit, sometimes denoted L2. The confidence interval is L2 – L1 = 2 * 
1.96(σ/√n). 

Using the function name and our Y variable,  

L1 =     - CONFIDENCE.NORM(parms) and  

L2 =     + CONFIDENCE.NORM(parms). 

Figure 7-13 shows the parameters (parms) for =CONFIDENCE.NORM.  

Figure 7-11. Calculating confidence limits for the mean when the parametric standard deviation is known. 

Figure 7-12. HELP text with error. 
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• The parameter alpha is the complement of the confidence level; thus for 95% confidence, α = 0.05. 

• The parameter standard_dev is the parametric standard deviation. 

• The parameter size is the sample size n. 

For example, if we know from prior data that the parametric standard deviation for the distribution of 

Barsoomian roncinal weights is 23 kg and we acquire a sample of 12 roncinals whose mean weight is 745 kg, 
we can easily calculate that the lower and upper confidence 95% confidence limits are as shown in the 
composite image of Figure 7-14 . 

  

Figure 7-13. Parameters for computing confidence limits to the mean given the 
parametric standard deviation. 

Figure 7-14. Calculating lower and upper confidence limits for the parametric mean given the parametric standard 

deviation. 

INSTANT TEST P 7-19 

Duplicate the calculations shown above in your own spreadsheet but don’t use any $ 

signs in the formulas so you can propagate the formulas sideways. Create 6 columns of 

data with confidence levels 80%, 85%, 90%, 95%, 99% and 99.9%.  Graph the lower and 

upper confidence limits against the confidence level. Discuss your findings in the 

discussion group on NUoodle for this week. 
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7.15 Estimating Parametric Mean Using the Sample Standard Deviation 

What happens if we don’t know the parametric standard deviation (which is the same as saying we don’t know 
the parametric variance)?  

We use the sample standard deviation, s to compute an estimate of the standard error of the mean 

s    = s/√n 
where n is the sample size and s is the standard deviation of the sample. Then the statistic 

(    - μ)/s    
is distributed as a Student’s-t distribution with n – 1 degrees of freedom. 

These deviates will be more variable than those computed using a single parametric value for the standard 
error because sometimes the sample s will be smaller than the parametric σ and sometimes it will be larger. It 
follows that the frequency distribution for the ratio  

(   - μ)/s  
must be different from the distribution of  

(   - μ)/σ  

that we studied earlier: it will be broader because of the variations in the denominator. 

In fact the distribution of  

(   - μ)/s    

is called Student’s-t distribution and was 
published in 1908 by the famous English 
mathematician William Sealy Gosset 
(1876-1937) who published extensively in 
statistics under the pseudonym Student. 
The distribution is actually a family of 
curves defined by the sample size: the 
degrees of freedom of each distribution is one 
less than the sample size on which the 
sample standard deviation is computed. 
Note that when df = ∞, Student’s-t 
distribution is the Normal distribution. 
Figure 7-15 illustrates this relationship 
between Student’s t and the Normal 
distribution.81 

 

 

81 Image used in compliance with Creative Commons Attribution 3.0 license from < 
http://upload.wikimedia.org/wikipedia/commons/thumb/4/41/Student_t_pdf.svg/1000px-Student_t_pdf.svg.png > or < 
http://tinyurl.com/9abxycu >. 

Figure 7-15. Family of Student’s-t distributions. 

http://upload.wikimedia.org/wikipedia/commons/thumb/4/41/Student_t_pdf.svg/1000px-Student_t_pdf.svg.png
http://tinyurl.com/9abxycu
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7.16 Degrees of Freedom Vary in Statistical Applications 

We use degrees of freedom (df) extensively in our work in statistics. One interpretation is that if we have n data in 
a sample, calculating the sum of the values fixes (n – 1) of the values; i.e., knowing the sum, we don’t need to 
know the last of the values, since it can be computed as the sum minus the sum of the other (n - 1) data. 
Thus only (n - 1) of the data are free to vary – hence the degrees of freedom are (n – 1). However, the exact 
computation of the degrees of freedom for a statistic is particular to each type of statistic.  

As mentioned in the previous section, Student’s-t distribution approaches the Normal distribution more and 
more closely as the degrees of freedom rise; indeed the Normal distribution is Student’s-t distribution with 
infinite degrees of freedom. Think of the approach of Student’s-t distribution to the Normal distribution with 
increasing sample size as another example of the Central Limit Theorem. 

7.17 Notation for Critical Values 

The critical value of Student’s-t distribution with n - 1 degrees of freedom below which  of the distribution 
lies is written as  

t[n-1]. 
In more general use, the degrees of freedom are represented by the letter ν (nu), the Greek equivalent of n. 
Thus you might see this form:  

t[] 
to represent the critical value of Student’s t for ν degrees of freedom which has a probability of  of having 

values that large or smaller. On the probability distribution, t thus demarcates the portion  of the curve 

to the left and the portion (1 - ) to the right of that value. The square brackets are a typical way of separating 
the degrees of freedom from the critical probability. 
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7.18 Two-Tailed Distributions 

Because the Normal distribution and the Student’s-t distribution are symmetric around the mean, they are 
called two-tailed probability distributions. 

In practice, we express the confidence limits based on a sample mean      with unknown parametric standard 
deviation as follows: 

P{   - t/2 [n-1]s   μ     + t/2 [n-1]s   } = 1 -  
Notice that α represents the total of the area below and above the (1 – α) confidence limits. Each tail of the 
distribution represents a probability of α/2. 

So to compute the (1 - ) confidence limits of a population mean given the sample mean   and that sample’s 
standard deviation s and sample size n, we 

(1)  Compute the standard error of the mean as  

s   = s/n 
(2)  Locate the absolute value (e.g., |-3| = 3 = |+3|) of the t-statistic corresponding to a left tail of 

probability /2; that is, 

| t/2 [n-1] | 
 (3)  Compute the lower and upper confidence limits as 

L1 =   - | t/2 [n-1] |s      and    L2 =    + | t/2 [n-1] |s 

 

Figure 7-16 shows the two-tailed probabilities for distributions like the Normal and the Students-t. 
 

Figure 7-16. Confidence limits for the mean using Student's-t distribution and two-tailed probabilities. 
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7.19 EXCEL CONFIDENCE.T Function 

The EXCEL 2010 function, =CONFIDENCE.T, that computes half the confidence interval for a parametric 

mean based on a sample mean Y̅ and its observed sample standard deviation s. The function is is illustrated in 
the center of Figure 7-11 and is highlighted below in Figure 7-17.  

 

=CONFIDENCE.T works much like =CONFIDENCE.NORM. Figure 7-18 shows the calculations and 
formulae. Comparing this result with Figure 7-14, we note that the confidence limits are noticeably wider 
apart. Where the limits based on the parametric standard deviation were 732.0 and 758.0, the limits using the 
sample standard deviation are 730.4 and 759.6. The latter confidence interval is roughly 112% of the former 
confidence interval. 

  

Figure 7-17. Function for confidence limits of a mean knowing the sample standard deviation. 

Figure 7-18. Confidence limits for the mean based on the sample standard deviation. 
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7.20 Beware the Definition of α in Inverse Probability Functions  

There is another function that can be useful in many other applications, including computing confidence 
limits for other kinds of statistics that the mean. Many applications can use the =T.INV (or its older 
equivalent, =TINV) and the =T.INV.2T functions to compute critical values for tα[ν]. 

 

However, a critical issue when computing critical values is that these functions – and other functions you will 
encounter in your explorations of EXCEL and of other statistical packages – have different, contradictory 
definitions of the probability parameter! Figure 7-19 shows the syntax of the EXCEL 2010 functions; notice 
that the parameter probability occurs in both. 

• The =T.INV function yields a critical value using the left tail of the probability distribution, which 
means that if we enter =T.INV(.025, df), the function yields the left-tail critical value t.025[ν] (a negative 
number) which produces 0.025 on the left of the critical value and 0.975 to the right of the critical 
value. Because of the symmetry of the Student’s-t distribution, that also means that the 0.025 of the 
distribution lies to the right of | t.025[ν] | and 0.975 of the distribution lies to the right of that value. 

o For example, we can calculate =T.INV(0.025, 100)= -1.98397. We write this as  
t.025[100] = -1.98397 or as t0.975[100] = +1.98397 

o Thus the probability parameter in this function generates a critical value corresponding to a 
one-tailed probability for the left-tail critical value, a negative number. 

• Now consider =T.INV.2T, which, as the .2T indicates, uses a two-tailed  probability – and in addition, 
computes the right-tail critical value, a positive number. 

o For example, we can calculate =T.INV.2T(0.05, 100) = 1.98397. Exactly as above, we write 
this as t.025[100] = 1.98397. Notice that we have to describe it as cutting off a right tail with 
0.025, not the 0.05 entered into the function! 

o So as you can see, the =T.INV.2T function automatically computes a critical value that 
defines the left tail and the right tail for the critical value as having half the probability entered 
in the probability parameter. 

Remember this example: you must verify whether a statistical function in any statistical package 
computes left-tail or right-tail critical values using one-tailed or two-tailed probabilities. Don’t get 
upset or curse the programmers for inconsistency: just check to make sure you are computing what you need, 
not what you hope. 

If you want to check your understanding of a new function you haven’t used before, you may be able to 
check your understanding using known results for known parameters to ensure that you are not mistaken in 
your understanding of what the new parameters mean for the new function. 

Figure 7-19. Same word, different meanings. 



Statistics in Business, Finance, Management & Information Technology 

Copyright © 2021 M. E. Kabay. All rights reserved.           < statistics_text.docx > Page 7-25 

7.21 Interval Estimate for Any Normally Distributed Statistic 

Even more generally, we can extend the applicability of the t-distribution and its use in computing interval 
estimates of a parametric value to any normally distributed statistic. 

Suppose we find a statistical research article that discusses the distribution of a new statistic, say, the “delta” 

coefficient ( for parameters, d for samples). Imagine that this (made-up) statistic is important in evaluating 

the reliability of warp cores on starships. Extensive research confirms that the  coefficient is indeed normally 

distributed. Starship engineers need to estimate the confidence limits for the parametric value  given a 
sample’s d statistic because any value smaller than 3 or greater than 4 may lead to a faster-than-light engine 
implosion. Galaxyfleet insists on a chance of implosion of less than 5%. 

The principle is that any normally distributed statistic  (in this imaginary example, d) – whose standard error is sd   

with  (for example,  = n - 1 degrees of freedom for a sample size of n) will fit the same pattern as what we 
have seen in computing confidence intervals for means using the Student’s-t distribution: 

P{d - |t/2[]|sd     d + |t/2[]|sd} = 1 −  
That is, interpreting this algebraic formulation, 

•  The probability P 

•  That we will be correct 

•  In asserting that the lower and upper computed (1 - ) confidence limits for  

•  With ν degrees of freedom 

•  Include the parametric statistic  

•  Is (1 - ). 

Example: 

• An engineer finds that in a sample of 100 warp-core signatures, the sample d statistic is 3.48 and the 

standard error of d (s) with ν = 99 degrees of freedom is 0.081.  

• The two-tailed function =T.INV.2T(.05,96) for α = 0.05 (i.e., α/2 in each tail) and ν = 100 in EXCEL 
gives us the critical upper-tail value t0.05 [96] = 1.984216952 which in turn lets us compute the 

differential t/2[] * sd = 1.984216952 * 0.081 = 0.160721573 or ~0.161. So the limits of our interval 

estimate for  are 3.48 ± 0.161 or 3.319 and 3.641. 

• Thus we have a 95% chance of being correct in asserting that the interval 3.319 to 3.641 based on 

our sample values of d includes the parametric delta-coefficient .  

• The confidence limits are within the range of accetability, so the engineer concludes that the chances 
of a warp-core implosion today are less than 5%. 

This example shows one of the ways that confidence limits can be used in quality control. 
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7.22 Population Proportion Based on Sample Proportion 

In a study of the value of warning labels on pharmaceutical products, the BigPharma Association of the 
Greater Solar System looked at a sample of 2,000 sentients out of the total population of about 397,452,000 
known to have been legally prescribed drugs with such warning labels and counted how many had bothered 
to read the labels. They found that the proportion psample of readers-of-labels was 22.5%. What was the 95% 
confidence interval for the parametric proportion ppopulation of readers-of-labels?82 

Statisticians have shown that repeated measures of psample with sample size n are distributed as a Normal 
distribution with the mean ppopulation (as expected under the Central Limit Theorem) and parametric variance 

σ2
p = p(1 -p)/n 

provided that  

• The population size N is infinite or  that  

• That the ratio of the sample size n to the population size N meets the condition  

                                                n/N  0.05 

• And that np > 5 and n(1 – p) > 5  

In other words, provided that the sample size n is less than 5% of the total sample size N, the approximation 
for the parametric variance of proportions works fine.  

It follows that the parametric standard error of the sample proportion, σp is defined as 

Once we know how to compute the standard error of the proportion and we know that the sample 
proporions are Normally distributed, we can compute the interval estimate for the population proportion 
using same principles described in §7.21 above. 

Figure 7-20 shows the meaning of the confidence limits graphically. 

 

82 We don’t use the Greek version of p () because it is too strongly associated with the ratio of the circumference to the radius of a circle in plane 
geometry. However, note that the capital version, Π, is frequently used to mean “product” in the same way that capital sigma, Σ, is conventionally used 
to mean “sum.” 

Figure 7-20. Confidence limits for a proportion p. 
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Figure 7-21 provides an example in EXCEL for computing confidence limits for the proportion of sentients who 
bothered to read the warning labels on pharmaceuticals in a study on planet Phlrn’thx in the Galaxyfleet year 
2712. Column D in the spreadsheet displays the formulas used in Column B.83 

The CHECKS sections verify that the results make sense. It’s always worth checking your formulas the first 
time you use them by using information you know. In this case, the formulas in the PRELIMINARY 

CHECKS compute the guidelines and verify that they are within specification. POST-CALCULATION 

CHECKS go backward from the computed confidence limits to verify that the proportion of the curve below 
the lower confidence limit and above the upper confidence limit match α/2. As it should be, the proportions 
are equal to α/2; they also add up to 1.000, as they must. 

The method discussed above works as an approximation that is acceptable for propotions that are not very 
close to zero or to one – something verified by the np > 5 and n(1 - p) > 5 conditions in the PRELIMINARY 

CHECKS section. Later in the course, you will learn about other methods of determining confidence limits 
for proportions that don’t fit these assumptions.  

 

83 If you ever need to display the formulas and the results in the same sheet, you use F2 to enter EDIT mode, copy the formula, type an apostrophe in 
the target cell and paste the formula into place right after the apostrophe. It will then be a string rather than an active formula. For example, Cell D3 
actually contains ‘=+B2/B1 and but it does not display the leading apostrophe. 

Figure 7-21. Demonstration of computing confidence limits for proportion. 
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7.23 Conditional Formatting 

In Figure 7-21, you may have noticed the green boxes with OK inthem 
next to the checks. These boxes are formatted with CONDITIONAL 

FORMATTING in EXCEL 2010. Figure 7-22 shows the drop-down 
menu for CONDITIONAL FORMATTING. 

Conditional formatting determines the appearance of a cell 
according to a wide range of possible conditions or rules. There are 
a great many options in CONDITIONAL FORMATTING, but 
Figure 7-23 demonstrates how a simple formula can warn a user 
visually that something is wrong.  

In this example, the check-result cells (C8 through C10, C21 and 
C22) are initially tinted light green by default with dark green 
letters. If the contents (defined by an =IF statement) are “NO” then 
the box turns light red and the letters are deep red. 

Defining appropriate conditional formatting, especially for a 
spreadsheet that you plan to use often or that you are putting into 
production for other people to use, can instantly warn a user of an 
error. Although the colors are helpful, even a color-blind user can 
see an appropriate message (e.g., “NO” or “BAD” or “ERROR”) to 
signal something wrong. 

The EXCEL 2010 HELP function has a number of useful articles 
about conditional formatting that you can access by entering that term 
in the search box. 

  

Figure 7-22. Accessing Conditional 
Formatting for an existing rule. 

Figure 7-23. Definition of rule for Check cells in example. 
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7.24 Confidence Limits for Population Variance and Population 
Standard Deviation Based on Sample Variability 

Erewham Natural Foods Corporation are sampling grandiloquent beetle carapaces to make a medicinal 
grandiloquent beetle carapace extract (GBCE™) highly popular among outworld populations such as the 
Drazeeli and the Q’ornopiads. The company is deeply concerned about the quality control in its Io plant 
because deviation from its contractual obligation can result in executive decapitation (on Drazeel) and slow 
conversion into compost (on Q’ornopia). For the Erewham plant to pass ISO (Interplanetary Standards 
Organization) 9000 standards, it must monitor the standard deviation of its 1000 gram bottles and start 
investigating the production line when the standard deviation of the production exceeds a parametric 
standard deviation of 2 grams.  

• For extra care in maintaining its corporate reputation, every day the plant managers compute 99% 
confidence limits for the standard deviation  

• Using a random sample of 25 bottles of GBCE™ selected from output using random numbers.  

• On a particular day in October 2281, the sample comes back with a standard deviation of 0.8 gm.  

• What are the 99% confidence limits for the standard deviation that day? 

Variances and standard deviations are not normally distributed. Instead, the quantity 

x = (n – 1)s2/σ2 = νs2/σ2 

(where n is the sample size, s2 is the sample variance, and σ2 is the parametric variance) is distributed 
according to a theoretical distribution called the chi-square (χ2) with ν = (n – 1) degrees of freedom. Several of 
these distributions are shown in Figure 7-24 with different degrees of freedom. 

  

Figure 7-24. Chi-square distributions with different degrees of freedom. 
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By convention, we use the notation 
 to designate the critical value of the 2 distribution with  degrees 

of freedom for which the probability of sampling a chi-square variable x greater than critical value is ; i.e., by 
definition 

P{x  
]} =  

There are two chi-square inverse functions – one for each tail – in EXCEL 2010 that can provide the critical 
values needed for computation of confidence limits to a variance. Figure 7-25 shows a compound screenshot 
of these variables in EXCEL: 

• The EXCEL function =CHISQ.INV(x, deg_freedom) gives the left-tail critical value x = 
 of 

the  distribution with df =  For example, the critical value 2
.005[10] = CHISQ.INV(.005, 10) = 

9.886 

• The EXCEL function =CHISQ.INV.RT(x, deg_freedom) generates the right-tail critical value 
corresponding to the value x; thus = CHISQ.INV.RT(.005, 10) = 45.559 

• Thus the (1 – α)= 0.99 confidence limits imply α/2 = 0.005 in each of the left and right tails of 
the distribution, and the (1 – α) = 0.99 in the area in the middle, as shown in Figure 7-26. 

  

Figure 7-25. Excel 2010 popups for chi-square inverse functions. 

Figure 7-26. Critical values of the chi-square distribution for computation of confidence limits. 
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To compute confidence limits to the parametric variance based on a sample variance, we need to expand our 
earlier definition of the critical value.84 We know that for the (1 – α) confidence limits, we can start with 

P{ CHISQ.INV(α/2, ν)  x  CHISQ.INV.RT(α/2, ν) } = 1 -  
Substituting the meaning of x, 

P{ CHISQ.INV(α/2, ν)   νs2/σ2   CHISQ.INV.RT(α/2, ν) } = 1 -  

P{ CHISQ.INV(α/2, ν)/ νs2   1/σ2   CHISQ.INV.RT(α/2, ν)/ νs2 } = 1 -  
Therefore85  

P{ νs2/CHISQ.INV(α/2, ν) ≥  σ2  ≥ νs2/CHISQ.INV.RT(α/2, ν) } = 1 -  
Or, putting the expression back in the normal order, 

P{ νs2/CHISQ.INV.RT(α/2, ν) ≤  σ2  ≤ νs2/CHISQ.INV(α/2, ν) } = 1 -  
This is the general form for the (1 - ) confidence limits to the variance given a sample variance, with the 
lower limit (L1) using the right-tail critical value (because it’s larger and so the quotient is smaller) and the 
upper limit (L2) using the left-tail critical value (because it’s smaller and so the quotient is bigger).  

Thus the confidence limits for the parametric variance based on the sample variance are computed as shown 
below using the functions in EXCEL 2010: 

L1 = νs2/CHISQ.INV.RT(α/2, ν) 

L2 = νs2/CHISQ.INV(α/2, ν) 
The confidence limits for the standard deviation are the square roots of the limits of the variance.86 

  

 

84 You are not expected to be able to derive these formulas from memory. They are presented to help all students understand the logic behind the 
computations and to support those students with an interest in the mathematical underpinnings of statistics. Courses in statistics offered in 
mathematics departments in universities usually include derivations of this kind for all computational formulas. 
85 Note the reversal of direction: if 2 < x < 3 then ½ > 1/x > 1/3. 
86 Neither a variance nor a standard deviation may be negative. 

INSTANT TEST P 7-31 

A security engineer is trying to establish confidence limits for the variance and of the 

standard deviation for the number of input-output (I/O) operations per minute on a 

particular network storage unit under normal load. 

The sample size is 10,000 and the observed sample standard deviation is 26.8. 

Demonstrate that the lower and upper 95% confidence limits for the variance are 699 

and 739; the lower and upper 95% confidence limits for the standard deviation are 26.4 

and 27.2. At the 95% level of confidence, why is an observed variance of 600 unlikely? 
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To illustrate these computations, we can return to the question of quality control of GBCE™ at the 
Erewham Company production line introduced at the start of this section. The Erewham data produce the 
following values using some simple EXCEL calculations shown in Figure 7-27. 

The 99% confidence limits for the standard deviation are 0.581 to 1.246 grams87 but the maximum acceptable 
standard deviation with 99% confidence is much higher, at 2 grams. There’s no reason to worry about 
decapitation or conversion into compost today! 

Quality-control (QC) charts typically mark the upper and lower limits to the statistics being monitored and 
graph the periodic measures; in this case, L2(σ) of 1.246 grams would be below the maximum allowable 
standard deviation of 2 grams. Production goes on and the Solar System will continue to benefit from 
grandiloquent beetle carapace extract (GBCE™). 

  

  

 

87 A quick note about asymmetric confidence limits: the midpoint of 1.246 and 0.581 is 0.932, which is not the observed standard deviation of 0.8; the 
same asymmetry affects the variance limits, where the midpoint of the limits is 0.946, also not the observed variance of 0.64. The reason is that the 
underlying probability distribution (χ2) is asymmetrical. Don’t expect all confidence limits to be symmetrical around the sample value! 

Figure 7-27. Excel 2010 calculations of confidence limits for the 

variance and the standard deviation based on sample data. 


